A NEW SOLUTION FOR LINEAR DIFFERENCE EQUATIONS

WOLFGANG J. STERNBERG

We shall give a solution of the fundamental difference equation:

$$
\begin{equation*}
F(t+1)-F(t)=\phi(t) \tag{1}
\end{equation*}
$$

As to our method, we stress that the theory of Fourier series is used. Accordingly, the variable t is assumed to be real. We suppose that $\phi(t)$ is integrable and has bounded variation in every finite interval of t or satisfies any other condition sufficient for expansion in a Fourier series. For simplicity we at first assume that $\phi(t)$ is continuous. Our solution is

$$
\begin{equation*}
F(t)=-\frac{\phi(t)}{2}+\int_{a}^{t} \phi(\tau) d \tau+2 \sum_{k=1}^{\infty} \int_{a}^{t} \phi(\tau) \cos 2 \pi k(t-\tau) d \tau, \tag{2}
\end{equation*}
$$

where a is constant.
The above series is not a Fourier series in the usual sense, since the upper limit of the integrals is not constant, but the variable t itself.
To prove the truth of our statement we compute the difference

$$
\begin{align*}
F(t+1)-F(t)= & -\frac{\phi(t+1)-\phi(t)}{2}+\int_{t}^{t+1} \phi(\tau) d \tau \\
& +2 \sum_{k=1}^{\infty} \int_{t}^{t+1} \phi(\tau) \cos 2 \pi k(t-\tau) d \tau . \tag{3}
\end{align*}
$$

Now, expansion of $\phi(t)$ in a Fourier series in any interval of length 1 , say in the interval $c \cdots c+1, c$ meaning an arbitrary real constant, gives

$$
\phi(t)=\int_{c}^{c+1} \phi(\tau) d \tau+2 \sum_{k=1}^{\infty} \int_{o}^{c+1} \phi(\tau) \cos 2 \pi k(t-\tau) d \tau
$$

The series represents $\phi(t)$ in the interior of the said interval, but it represents the value $(\phi(c)+\phi(c+1)) / 2$ at either end point, say at the left end point c. Therefore

$$
\frac{\phi(c)+\phi(c+1)}{2}=\int_{c}^{c+1} \phi(\tau) d \tau+2 \sum_{k=1}^{\infty} \int_{c}^{c+1} \phi(\tau) \cos 2 \pi k(c-\tau) d \tau
$$

This holds for every c and we can write t instead of c, giving

[^0]
[^0]: Presented to the Society, February 26, 1944, under the title On difference equations; received by the editors October 17, 1944.

