A NEW SOLUTION FOR LINEAR DIFFERENCE EQUATIONS
WOLFGANG J. STERNBERG
We shall give a solution of the fundamental difference equation:
¢h) Fi¢+1) —F@) = ¢(.

As to our method, we stress that the theory of Fourier series is used.
Accordingly, the variable ¢ is assumed to be real. We suppose that
¢(t) is integrable and has bounded variation in every finite interval
of ¢ or satisfies any other condition sufficient for expansion in a
Fourier series. For simplicity we at first assume that ¢(¢) is con-
tinuous. Our solution is
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where a is constant.
The above series is not a Fourier series in the usual sense, since the
upper limit of the integrals is not constant, but the variable ¢ itself.
To prove the truth of our statement we compute the difference
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Now, expansion of ¢(¢) in a Fourier series in any interval of length 1,
say in the interval ¢ - - - ¢+1, ¢ meaning an arbitrary real constant,
gives
c+1 0 ct+1
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The series represents ¢(¢) in the interior of the said interval, but it
represents the value (¢(c) +¢(c+1))/2 at either end point, say at the
left end point ¢. Therefore
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This holds for every ¢ and we can write ¢ instead of ¢, giving
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