PROOF OF A THEOREM OF LITTLEWOOD AND PALEY

A. ZYGMUND

1. Introduction. In recent years, important results in the theory of Fourier series were obtained by Littlewood and Paley [3].¹ They used complex methods, and their main tool was an auxiliary function, $g(\theta)$, which they themselves had introduced.

Let $\phi(z)$ be any function regular for |z| < 1. The real-valued and non-negative function $g(\theta) = g(\theta; \phi)$ is defined by the formula

(1.1)
$$g(\theta) = \left\{ \int_0^1 (1-\rho) \left| \phi'(\rho e^{i\theta}) \right|^2 d\rho \right\}^{1/2}, \quad 0 \leq \rho < 1.$$

The integral on the right is finite or infinite, but always has meaning.

Let $f(\theta)$ be any *L*-integrable function of period 2π , and let $f(\rho, \theta)$ be the Poisson integral of f. Thus

$$f(\rho, \theta) = \frac{1}{\pi} \int_0^{2\pi} f(u) P(\rho, \theta - u) du,$$

where $P(\rho, t) = (1 - \rho^2)/2(1 - 2\rho \cos t + \rho^2)$ is the Poisson kernel. If $\overline{f}(\rho, \theta)$ is the harmonic function conjugate to $f(\rho, \theta)$ and vanishing at the origin, and if we set

$$\phi(z) = f(\rho, \theta) + i\bar{f}(\rho, \theta), \qquad z = \rho e^{i\theta},$$

the function (1.1) will sometimes be denoted by $g(\theta; f)$.

The function $g(\theta)$ is suggested by some heuristic argument (see [3, I]). It does not seem to possess any obvious geometric significance, although it has a majorant, $s(\theta)$, with a simple geometric meaning. The reader interested in this problem is referred to papers [4, 7]. In the present note we shall be exclusively concerned with the function $g(\theta)$.

As usual, by H^{λ} we denote the class of functions $\phi(z)$ regular in |z| < 1 and satisfying

(1.2)
$$\int_0^{2\pi} |\phi(\rho e^{i\theta})|^{\lambda} d\theta = O(1), \qquad 0 \leq \rho < 1.$$

As is well known, this condition implies almost everywhere the existence of the radial limit $\phi(e^{i\theta}) = \lim_{\rho \to 1} \phi(\rho e^{i\theta})$.

Received by the editors January 8, 1945.

¹ Numbers in brackets refer to the references cited at the end of the paper.