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The purpose of this note is to prove that if, on a ring B^ [a, 6, 
c, • • • ] with unity element 1, a real valued function ju(a) is defined 
satisfying 
(1) ix{a) > 0 for every a ^ O , 

(2) /i(a + b) + 2fi(ab) = M(a) + /*(&) 

for every a, &£U, then 5 is a metric Boolean ring1 [2, pp. 41 and 96]. 
This result is analogous to one of Glivenko's [3] which states that 
every metric lattice is modular [2, p. 42]. We discuss also the follow­
ing modification of (1) : 

(3) fi(a) ^ 0 for every a £ B. 

The conditions (2) and (3) also lead, via identification, to a metric 
Boolean ring. 

THEOREM 1. Let B be a ring with unity element 1 on which is defined 
a real valued function fx(a) satisfying (1) and (2). Then B is a metric 
Boolean ring. 

The following lemma lists the steps in our proof of Theorem 1. 

LEMMA 1. For every a> & £ 5 , we have (i) ;u(a) = 0 if and only if a = 0, 
(ii) ix(ab)=tx{ba), (iii) M ( 1 + Ö ) = M ( 1 ) - M ( < 0 , (iv) ii(a*V) = v(db*\ (V) 

/x(a2)=ju(a), (vi) a+a = 0, (vii) a2 = a. 

PROOF, (i) Set & = 0 in (2) and use (1). (ii) This is clear by (2). 
(iii) Set b = 1 in (2). (iv) From (2) and (iii) we have 

n(a + b + 1) + 2y,{ab + a) = M(a) + ju(l) - v(b). 

Using (2) again gives 

fi(a + b + 1) + 2fx(ab) + 2»(a) - 4fx(a2b) = ti(a) + M(1) ~ M(*). 

Rearranging, we find that 

4M(a2ö) = M(« + b + 1) + 2|i(oJ) + p(a) + »(b) - M(l). 
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1 Numbers enclosed in brackets denote references given at the end of the paper. 
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