QUADRICS ASSOCIATED WITH A CURVE ON A SURFACE

V. G. GROVE

1. Introduction. Many of the important contributions to projective differential geometry of non-ruled surfaces are concerned with systems of quadrics associated with a point and a curve on the surface. Many of these quadrics belong to a certain family, a characterization of which is the main purpose of this paper.

Let the homogeneous projective coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ of a general point x on a non-ruled surface S be given as functions of the asymptotic parameters u, v, and let these functions be so normalized that they satisfy the Fubini canonical system of differential equations,

$$
\begin{aligned}
x_{u u} & =\theta_{u} x_{u}+\beta x_{v}+p x, \\
x_{v v} & =\gamma x_{u}+\theta_{v} x_{v}+q x, \quad \theta=\log (\beta \gamma),
\end{aligned}
$$

wherein the coefficients satisfy certain integrability conditions [7]. ${ }^{1}$ The abbreviations

$$
\phi=\partial \log \left(\beta \gamma^{2}\right) / \partial u, \quad \psi=\partial \log \left(\beta^{2} \gamma\right) / \partial v
$$

will be found useful.
Let C_{λ}, a curve on S through x, be considered as imbedded in a one-parameter family of curves defined by the differential equation

$$
d v-\lambda d u=0
$$

Since the homogeneous coordinates of any point X may be written in the form

$$
X=x_{1} x+x_{2} x_{u}+x_{3} x_{v}+x_{4} x_{u v}
$$

the coordinates of X referred to the tetrahedron $x, x_{u}, x_{v}, x_{u v}$ may be taken as ($x_{1}, x_{2}, x_{3}, x_{4}$).

It is remarkable that many of the equations of quadrics associated with S and C_{λ} at x are of the form

$$
\begin{equation*}
x_{2} x_{3}+T x_{4}=0 \tag{1}
\end{equation*}
$$

wherein

$$
\begin{equation*}
T=-x_{1}+k_{2} x_{2}+k_{3} x_{8}+k_{4} x_{4} \tag{2}
\end{equation*}
$$

and
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

