NOTE ON INTERPOLATION FOR A FUNCTION OF SEVERAL VARIABLES

HERBERT E. SALZER

The simplest interpolation formula for a function of ω variables x, y, \cdots, z is the multiple Gregory-Newton formula, which approximates the function by a polynomial in p, q, \cdots, r of total degree n, namely,

$$
\begin{aligned}
& f\left(x+p h_{1}, y+q h_{2}, \cdots, z+r h_{\omega}\right) \\
& \quad=\sum_{i+j+\cdots+k=0}^{n}\binom{p}{i}\binom{q}{j} \cdots\binom{r}{k} \Delta_{x^{i} y^{i} \cdots z^{k}}^{i+j+\cdots+k} f(x, y, \cdots, z),
\end{aligned}
$$

where x, y, \cdots, z denote the independent variables, h_{m} denotes the tabular intervals,

$$
\binom{p}{i} \text { denotes } \frac{p(p-1) \cdots(p-i+1)}{i!} \text {, with }\binom{p}{0}=1
$$

and $\Delta_{x^{v} v^{2} \cdots z^{k}}^{\substack{+3}}{ }^{+\boldsymbol{k}} f(x, y, \cdots, z)$ denotes the mixed partial advancing difference of $f(x, y, \cdots, z)$, of order i with respect to x, j with respect to y, and so on. The summation is for all sets of values of i, j, \cdots, k such that $i+j+\cdots+k$ goes from 0 to n. Using the notation $f_{s, t, \cdots, u}$ to denote $f\left(x+s h_{1}, y+t h_{2}, \cdots, z+u h_{\omega}\right)$, it is apparent that the multiple Gregory-Newton formula involves all values $f_{s, t}, \cdots, u$ such that $s+t+\cdots+u=0,1,2, \cdots, n$. Thus for the case of 2 dimensions the arguments are the $(n+1)(n+2) / 2$ points forming a right triangle, vertex at (x, y), and for 3 dimensions the arguments are the $(n+1)(n+2)(n+3) / 6$ points forming a solid tetrahedron, vertex at (x, y, z).

The purpose of the present note is to show that when (1) is expressed in the simpler form
(2) $f\left(x+p h_{1}, y+q h_{2}, \cdots, z+r h_{\omega}\right)=\sum_{s+t+\cdots+u=0}^{n} C_{s, t, \cdots, u} f_{s, t, \cdots, u}$,
then we have

$$
\begin{equation*}
C_{s, t, \cdots, u}=\binom{n-p-q-\cdots-r}{n-s-t-\cdots-u}\binom{p}{s}\binom{q}{t} \cdots\binom{r}{u} \tag{3}
\end{equation*}
$$

Thus (1) can be employed without the labor of finding all the mixed
Received by the editors September 9, 1944.

