ON THE DEGREE OF APPROXIMATION OF FUNCTIONS BY FEJÉR MEANS

A. ZYGMUND

1. Continuous functions. It has been proved by S. Bernstein that if f(x) is periodic and of the class Lip α , $0 < \alpha < 1$, then the (C, 1) means $\sigma_n(x) = \sigma_n(x; f)$ of the Fourier series of f satisfy the condition

(1.1)
$$\sigma_n(x) - f(x) = O(n^{-\alpha}),$$

uniformly in x. The result is false for $\alpha = 1$. The place of (1.1) is then taken by

(1.2)
$$\sigma_n(x) - f(x) = O(\log n/n),$$

and, as simple examples show, the factor $\log n$ on the right cannot be removed (see, for example, A. Zygmund, *Trigonometrical series*, p. 62). It will be shown here that for power series the inequality (1.1) holds even for $\alpha = 1$. More generally, we have the following theorem.

THEOREM 1. Suppose that f(x) is periodic, continuous, and that the Fourier series of f is of power series type,

$$f(x) \sim \sum_{\nu=0}^{\infty} c_{\nu} e^{i\nu x}.$$

Then

(1.3)
$$\left| \sigma_{n-1}(x) - f(x) \right| \leq A \omega (2\pi/n),$$

where $\omega(\delta)$ is the modulus of continuity of f and A is an absolute constant.

The proof is based on the following lemma.

LEMMA. Suppose that

(1.4)
$$g(x) \sim \sum_{-\infty}^{+\infty} \gamma_{\nu} e^{i\nu x}$$

satisfies $|g(x+h) - g(x)| \leq M|h|$. Then

(1.5)
$$\left| \widetilde{\sigma}_{n-1}(x) - \widetilde{g}(x) \right| \leq BM/n,$$

where $\tilde{g}(x)$ is the function conjugate to g(x) and $\tilde{\sigma}_n(x)$ are the (C, 1) means of the series conjugate to (1.4).

For the proof of the lemma we note that

Received by the editors August 3, 1944.