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1. Continuous functions. I t has been proved by S. Bernstein that 
if f(x) is periodic and of the class Lip a, 0 < a < l , then the (C, 1) 
means an(x) = <rn(x;f) of the Fourier series of ƒ satisfy the condition 

(1.1) * * ( * ) - ƒ ( * ) - O ( f r - ) , 

uniformly in x. The result is false for a = 1. The place of (1.1) is then 
taken by 

(1.2) crn(x) - ƒ(*) - 0(log »/»), 

and, as simple examples show, the factor log n on the right cannot be 
removed (see, for example, A. Zygmund, Trigonometrical series, p. 62). 
I t will be shown here that for power series the inequality (1.1) holds 
even for a = l . More generally, we have the following theorem. 

THEOREM 1. Suppose that f (x) is periodic, continuous, and that the 
Fourier series of f is of power series type, 

oo 

ƒ(*) ~ YJ Cveivx. 

Then 

(1.3) | <rn~i(x) - ƒ(*) | S Ao>(2T/n), 

where co(S) is the modulus of continuity off and A is an absolute constant. 

The proof is based on the following lemma. 

LEMMA. Suppose that 

(1.4) g(x) ~ I > , e * > * 
—00 

satisfies \g(x+h)~g(x)\ £*M\h\. Then 

(1.5) | o^i(*) - g(x) | g BM/n9 

where g(x) is the function conjugate to g(x) and crn(x) are the (C, 1) 
means of the series conjugate to (1.4). 

For the proof of the lemma we note that 
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