# CONCERNING THE DEFINITION OF HARMONIC FUNCTIONS 

## E. F. BECKENBACH

1. Introduction. A real function $u(x, y)$, defined in a domain (nonnull connected open set) $D$, is said to be harmonic in $D$ provided $u(x, y)$ and its partial derivatives of the first and second orders are continuous and the Laplace equation,

$$
\begin{equation*}
\Delta u \equiv \partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}=0 \tag{1}
\end{equation*}
$$

is satisfied throughout $D$. A function is said to be harmonic at a point provided it is harmonic in a domain containing the point.

It has been shown [1] that if $u(x, y)$ is continuous in $D$ and if the second order partial derivatives $\partial^{2} u / \partial x^{2}$ and $\partial^{2} u / \partial y^{2}$ exist and satisfy the Laplace equation (1) throughout $D$, then $u(x, y)$ is harmonic in $D$.

We shall show that if $u(x, y)$ and its partial derivatives $\partial u / \partial x$ and $\partial u / \partial y$ are continuous in $D$, if $\partial u / \partial x$ and $\partial u / \partial y$ are differentiable, or even have finite Dini derivates, with respect to $x$ and $y$ at all points of $D$ except at most at the points of a denumerable set of points in $D$, and if the Laplace equation (1) is satisfied at almost all points of $D$ at which $\partial^{2} u / \partial x^{2}$ and $\partial^{2} u / \partial y^{2}$ exist, then $u(x, y)$ is harmonic in $D$.

Our result is comparable with the Looman-Menchoff theorem [3, pp. 9-16; 5, pp. 198-201] concerning the Cauchy-Riemann first order partial differential equations and analytic functions of a complex variable. Ridder [4] has stated that harmonic functions can be given a Looman-Menchoff characterization; but a generalization of the Looman-Menchoff theorem on which his proof is based is invalid, for there are functions having isolated singularities which satisfy the hypotheses of the generalization without satisfying the conclusion. For a generalization of the Looman-Menchoff theorem, see Maker [2].
2. Notation and lemmas. By $C(Q)$ we shall denote a square, by $C(R)$ a rectangle, having sides parallel to the coordinate axes. The set consisting of the points of $C(Q)$, or of $C(R)$, plus its interior, will be denoted by $Q$, or $R$, respectively.

Let $F$ be a non-null set closed with respect to the domain $D$, and $C(Q)$ any square with $Q$ lying in $D$, with sides of positive length and parallel to the coordinate axes, and with center at a point of $F$. Then the points common to $F$ and $Q$ will be called a portion of $F$.

[^0]
[^0]:    Presented to the Society, November 25, 1944; received by the editors October 2, 1944.
    ${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

