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HadamarcTs theorem is concerned with the relation between the 
maximum absolute values of an analytic function on three concen
tric circles.1 If we put 

M(r) - m a x | / (*) | , 

then the theorem states that log M(r) is a convex function of log r for 
r'<r<r", if f(z) is regular for r ' < | s | < r" . This is an immediate 
consequence of the fact that if \f(z) \ £A \ z\x on two circles about the 
origin, then it is also true between the circles; and this in turn is 
seen by applying the principle of maximum to f(z)/zK. The bound is 
attainable within the ring only for f(z)—azx with \a\ —A. Notice 
that this function is single-valued only if X is an integer, so that 
Hadamard's bound is not in general sharp for single-valued functions. 
(It is the sharp bound for the class of many-valued functions, any 
branch of which is regular in the ring, and for which \f(z) \ is single-
valued.) 

We shall consider only single-valued functions. The problem of 
finding the sharp bound in Hadamard's theorem is formulated as 
Problem A below. (It is no essential restriction to suppose that the 
radius of the outer circle is 1, and that the given bound on this circle 
is 1.) Problems B and C raise the same question for more special 
classes of functions. 

PROBLEM A. Suppose 0<q<Q<l and p>0. Consider the class of 
functions satisfying the following conditions: f(z) is regular for 

l / O O l ^ l for | * | - 1 , | / («) |SS# for | s | - ; . 
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1 The theorem was stated (without proof) in Hadamard's note, Sur les fonctions 
entières, Bull. Soc. Math. France vol. 2.4 (1896) pp. 186-187. His proof was apparently 
first published in 1912; it may be found in footnote 2, p. 94, of Selecta: Jubilé Scien' 
tifique de M. Jacques Hadamard, Paris, 1935. In the meantime, proofs (of a less simple 
nature) had been given by O. Blumenthal and by G. Faber. See Blumenthal, Über 
ganze transzendente Funktionen, Jber. Deutschen Math. Verein. vol. 16 (1907) pp. 97-
109, and Sur le mode de croissance des fonctions entières, Bull. Soc. Math. France vol. 
35 (1907) pp. 213-232; Faber, Über das Anwachsen analytischer Funktionen, Math. 
Ann. vol 63 (1907) pp. 549-551. 
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