CONTRACTIONS IN NON-EUCLIDEAN SPACES

F. A. VALENTINE

The existence of an extension of the range of definition of a function f(x) defined on a set S of a metric space M to a metric space M' so as to preserve a contraction of the type

(1)
$$||f(x_1), f(x_2)||' \leq ||x_1, x_2||$$

depends upon M and M'. The author has previously shown $[3, 4]^1$ that for M = M' the extension exists when M is: (1) the *n*-dimensional Euclidean space; (2) the surface of the *n*-dimensional Euclidean sphere; (3) the general Hilbert space. In this brief article the extension is shown to exist when each M and M' is the *n*-dimensional hyperbolic space. The method used to prove this result is applied to a metric space which includes both the hemispherical and hyperbolic cases. Hence a unification of results is also obtained.

As shown in the previous papers [3, 4] a necessary and sufficient condition for a contraction to be extensible in M and M' is the property E, which is restated as follows.

PROPERTY E. Consider in each of the metric spaces M and M' a set of spheres, such that to each sphere $S_i \in M$, having center x_i and radius r_i , there corresponds a sphere $S'_i \in M'$, having center x'_i and radius r'_i . Furthermore suppose that

(2)
$$r_i = r'_i,$$

 $||x'_i, x'_j||' \leq ||x_i, x_j||$

for all corresponding spheres S_i and S'_i , and for all corresponding pairs (S_i, S_j) and (S'_i, S'_j) .

The spaces M and M' are said to have the extensibility property E if conditions (2) and

(3)
$$\prod_{i} S_{i} \neq 0$$

imply that

(4) $\prod_{i} S'_{i} \neq 0.$

If the above statement holds for M = M', the space M is said to have property E.

Presented to the Society, April 29, 1944; received by the editors February 18, 1944.

¹ Numbers in brackets refer to references at the end of the paper.