THE "FUNDAMENTAL THEOREM OF ALGEBRA" FOR QUATERNIONS

SAMUEL EILENBERG AND IVAN NIVEN

We are concerned with polynomials of degree n of the type

$$f(x) = a_0 x a_1 x \cdots x a_n + \phi(x),$$

where x, a_0, a_1, \dots, a_n are real quaternions $(a_i \neq 0 \text{ for } i = 0, 1, \dots, n)$ and $\phi(x)$ is a sum of a finite number of similar monomials $b_0xb_1x \cdots xb_k$, where k < n.

THEOREM 1. The equation f(x) = 0 has at least one solution.¹

The 4-dimensional euclidean space R_4 of all quaternions will be made compact by adding the point ∞ to form a 4-dimensional sphere S_4 . Setting $f(\infty) = \infty$ we get a mapping

$$f:S_4 \rightarrow S_4.$$

The continuity of f at ∞ follows from the fact that |f(x)| increases without limit as |x| increases without limit, a fact which is obvious from the definition of f. It should be noted that this argument is not valid for polynomials of degree n with more than one term of degree n.

Theorem 1 is then a consequence of the following theorem which asserts that "essentially" the equation f(x) = 0 has exactly *n* solutions.

THEOREM 2. The mapping $f: S_4 \rightarrow S_4$ has the degree n (in the sense of Brouwer).²

We define a mapping $g: S_4 \rightarrow S_4$ as follows:

 $g(x) = x^n$ for $x \in R_4$, $g(\infty) = \infty$.

Theorem 2 is a consequence of the following two lemmas.

LEMMA 1. The mappings f and g of S_4 into S_4 are homotopic.

LEMMA 2. The mapping g has degree n.

PROOF OF LEMMA 1. Define for $0 \le t \le 1$

Received by the editors December 27, 1943.

¹ This result has been obtained for the special case in which all terms of f(x) have the form ax^{k} ; cf. Ivan Niven, *Equations in quaternions*, Amer. Math. Monthly vol. 48 (1941) pp. 654–661.

² Cf. Alexandroff and Hopf, *Topologie*, Berlin, 1935, chap. 12, for the theory of the degree of a mapping.