THE "FUNDAMENTAL THEOREM OF ALGEBRA" FOR QUATERNIONS

SAMUEL EILENBERG AND IVAN NIVEN

We are concerned with polynomials of degree n of the type

$$
f(x)=a_{0} x a_{1} x \cdots x a_{n}+\phi(x)
$$

where $x, a_{0}, a_{1}, \cdots, a_{n}$ are real quaternions ($a_{i} \neq 0$ for $i=0,1, \cdots, n$) and $\phi(x)$ is a sum of a finite number of similar monomials $b_{0} x b_{1} x \cdots x b_{k}$, where $k<n$.

Theorem 1. The equation $f(x)=0$ has at least one solution. ${ }^{1}$
The 4 -dimensional euclidean space R_{4} of all quaternions will be made compact by adding the point ∞ to form a 4 -dimensional sphere S_{4}. Setting $f(\infty)=\infty$ we get a mapping

$$
f: S_{4} \rightarrow S_{4} .
$$

The continuity of f at ∞ follows from the fact that $|f(x)|$ increases without limit as $|x|$ increases without limit, a fact which is obvious from the definition of f. It should be noted that this argument is not valid for polynomials of degree n with more than one term of degree n.

Theorem 1 is then a consequence of the following theorem which asserts that "essentially" the equation $f(x)=0$ has exactly n solutions.

Theorem 2. The mapping $f: S_{4} \rightarrow S_{4}$ has the degree n (in the sense of Brouwer). ${ }^{2}$

We define a mapping $g: S_{4} \rightarrow S_{4}$ as follows:

$$
g(x)=x^{n} \quad \text { for } \quad x \in R_{4}, \quad g(\infty)=\infty
$$

Theorem 2 is a consequence of the following two lemmas.
Lemma 1. The mappings f and g of S_{4} into S_{4} are homotopic.
Lemma 2. The mapping g has degree n.
Proof of Lemma 1. Define for $0 \leqq t \leqq 1$

[^0]
[^0]: Received by the editors December 27, 1943.
 ${ }^{1}$ This result has been obtained for the special case in which all terms of $f(x)$ have the form $a x^{k}$; cf. Ivan Niven, Equations in quaternions, Amer. Math. Monthly vol. 48 (1941) pp. 654-661.
 ${ }^{2}$ Cf. Alexandroff and Hopf, Topologie, Berlin, 1935, chap. 12, for the theory of the degree of a mapping.

