A RECURRENCE FORMULA FOR THE SOLUTIONS OF
CERTAIN LINEAR PARTIAL DIFFERENTIAL
EQUATIONS

MORRIS MARDEN

1. Introduction. In a number of recent papers, Bergman! has de-
veloped the theory of operational methods for transforming analytic
functions of a complex variable into solutions of the linear partial
differential equation

(1.1) LWU) = U+ a2, 2)U. + b3, 2)Us + ¢(2,2) U = 0,

where g2=x-41y, Z=x—1y,
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and where the coefficients a(z2, £), b(z, 2) and c¢(z, %) are analytic func-
tions of both variables 2 and Z. The equation (1.1) is equivalent to the
system of two real equations

T4

AU + 2408 128U + 2cv? + 2008

+ 46, U® — 46,0 = 0,
aU® — 200 — 20U + 2402 + 28U
+ 46U + 4,0 =0,
where
U=UMDHiU®; 24=(a+a)+0+D); 2B=i[(ad—a)—(b—-0)];
c=c1+1icy; 2D=(a+a)—(b+b); 2C=i[(a—a)+(6—b)].
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