REMARKS ON TRANSITIVITIES OF BETWEENNESS

W. R. TRANSUE

This note provides lattice theoretic interpretations of the transitivities

$$
\begin{aligned}
& T_{8 .} \quad a b c \cdot d a b \cdot x c d \cdot a \neq b \rightarrow a c x, \\
& T_{9 .} \quad a b c \cdot d a b \cdot x c d \cdot a \neq b \rightarrow b c x, \\
& T_{10 .} \quad a b c \cdot a b d \cdot x b c \cdot a \neq b \cdot b \neq c \rightarrow x b d,
\end{aligned}
$$

introduced by Pitcher and Smiley. ${ }^{1}$ It may be recalled that in a lattice the relation $a b c$ (b is between a and c) is said to hold if and only if

$$
(a \cup b) \cap(b \cup c)=b=(a \cap b) \cup(b \cap c)
$$

Theorem 1. If L is a lattice then its betweenness relation has one of the transitivities T_{8} or T_{9} if and only if L is linearly ordered.

Proof. It is obvious that T_{8} and T_{9} are satisfied if L is linearly ordered. To show that T_{8} implies linear order, consider two elements $a, c \in L$. Suppose that a and c are not comparable, that is, that none of the relations $a=c, a<c, a>c$ holds. Then $a \neq a \cup c, c \neq a \cup c$. Moreover, we have

$$
a a \cup c c \cdot a \cap c a a \cup c \cdot a \cup c c a \cap c \cdot a \neq a \cup_{c}
$$

and by T_{8} this implies $a c a \cup c$ which, with $a a \cup c c$, implies $c=a \cup c$, contrary to our assumption that $c \neq a \cup c$. In the same way T_{9} can be shown to imply linear order.

Theorem 2. If L is a lattice then its betweenness relation has the transitivity T_{10} if and only if L is linearly ordered or is composed of two linearly ordered systems with a common greatest element, I, and a common least element, 0.

Proof. It is easy to see that lattice betweenness in such a lattice has the transitivity T_{10}. Denote the two linearly ordered systems by L_{1} and L_{2}. Then if, in the hypotheses of $T_{10}, b \neq 0, b \neq I, b \in L_{1}$, all the elements a, c, d, and x must belong to L_{1} and the conclusion follows from the fact that T_{10} holds for linear order. If $b=0$ or $b=I$ in the hypotheses of T_{10} and if $a \in L_{1}$, then we must have $c \in L_{2}, d \in L_{2}$, $x \in L_{1}$ and the conclusion again follows.

[^0]
[^0]: Received by the editors February 26, 1943.
 ${ }^{1}$ Everett Pitcher and M. F. Smiley, Transitivities of betweenness, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 95-114. We shall use the notations and terminology of Pitcher and Smiley.

