REMARKS ON TRANSITIVITIES OF BETWEENNESS

W. R. TRANSUE

This note provides lattice theoretic interpretations of the transitivities

 $T_8. \quad abc \cdot dab \cdot xcd \cdot a \neq b \rightarrow acx,$

 T_{9} . $abc \cdot dab \cdot xcd \cdot a \neq b \rightarrow bcx$,

 $T_{10}. \ abc \cdot abd \cdot xbc \cdot a \neq b \cdot b \neq c \rightarrow xbd,$

introduced by Pitcher and Smiley.¹ It may be recalled that in a lattice the relation abc (b is between a and c) is said to hold if and only if

 $(a \cup b) \cap (b \cup c) = b = (a \cap b) \cup (b \cap c).$

THEOREM 1. If L is a lattice then its betweenness relation has one of the transitivities T_8 or T_9 if and only if L is linearly ordered.

PROOF. It is obvious that T_8 and T_9 are satisfied if L is linearly ordered. To show that T_8 implies linear order, consider two elements $a, c \in L$. Suppose that a and c are not comparable, that is, that none of the relations a = c, a < c, a > c holds. Then $a \neq a \cup c$, $c \neq a \cup c$. Moreover, we have

$$a a \cup c c \cdot a \cap c a a \cup c \cdot a \cup c c a \cap c \cdot a \neq a \cup c$$

and by T_8 this implies $a \ c \ a \cup c$ which, with $a \ a \cup c \ c$, implies $c = a \cup c$, contrary to our assumption that $c \neq a \cup c$. In the same way T_9 can be shown to imply linear order.

THEOREM 2. If L is a lattice then its betweenness relation has the transitivity T_{10} if and only if L is linearly ordered or is composed of two linearly ordered systems with a common greatest element, I, and a common least element, 0.

PROOF. It is easy to see that lattice betweenness in such a lattice has the transitivity T_{10} . Denote the two linearly ordered systems by L_1 and L_2 . Then if, in the hypotheses of T_{10} , $b \neq 0$, $b \neq I$, $b \in L_1$, all the elements a, c, d, and x must belong to L_1 and the conclusion follows from the fact that T_{10} holds for linear order. If b=0 or b=I in the hypotheses of T_{10} and if $a \in L_1$, then we must have $c \in L_2$, $d \in L_2$, $x \in L_1$ and the conclusion again follows.

Received by the editors February 26, 1943.

¹ Everett Pitcher and M. F. Smiley, *Transitivities of betweenness*, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 95–114. We shall use the notations and terminology of Pitcher and Smiley.