plication and addition) on indeterminates (which first appear as indeterminate coefficients). The situation is studied from several points of view. I (Abstract point of view): One set of relations may imply another. A set may be contradictory. Examples are given of complete sets; a set is complete when any relation compatible with it is implied by it. II (Realization): Here a linear vector space is considered and linear operators on it which satisfy the same relations as those that are given. The connection with I is given by the fact that relations satisfied in an invariant subspace imply relations in the whole space. In III a ring is considered generated (with the aid of a field) by operators satisfying given relations. The special case when the relations involve multiplication only correspond to a group algebra. IV deals with relations satisfied by operators as a result of their being operators on a vector space of a given dimensionality. (Received October 23, 1943.)
16. H. E. Salzer: New tables and facts involving sums of four tetrahedral numbers.

The author has a second empirical theorem about tetrahedral numbers, that is, $\left(n^{3}-n\right) / 6$ for integral n. Every tetrahedral number greater than 1 is the sum of four other non-negative tetrahedrals. This theorem has been verified for the first 200 cases in a table expressing every tetrahedral from 4 through 1373701 as a sum of four non-negative tetrahedrals. With the exception of 153, the first 200 triangular numbers $n(n+1) / 2$ can each be expressed as the sum of four non-negative tetrahedrals. There are only 45 integers less than or equal to 1000 which cannot be expressed as the sum of four non-negative tetrahedrals. All numbers ending in 0,5 , or 6 which are less than or equal to 2006 are expressible as a sum of four non-negative tetrahedrals. This includes the first 201 cases of each type. It is interesting to note that the smallest example of a number ending in 4 which is not expressible as a sum of four non-negative tetrahedrals occurs at 1314. Thus here is an instance where a statement is true in the first 131 cases, but fails in the 132nd. (Received October 13, 1943.)

17. L. R. Wilcox: Modularity in Birkhoff lattices.

The following theorem connecting G. Birkhoff's upper semi-modular lattices with the author's M-symmetric lattices is proved. Let a lattice be called upper semimodular if $a+b$ covers a, b when a and b cover $a b$; let a lattice be called M-symmetric if $(a+b) c=a+b c$ for every $a \leqq c$ implies $(d+c) b=d+c b$ for every $d \leqq b$; finally, let a lattice be called of finite dimensional type if every a, b with $a<b$ have a finite principal chain connecting them. Then a lattice of finite dimensional type is upper semimodular if and only if it is M-symmetric. The purpose of this theorem is to replace the condition of Birkhoff, forceful only when some chain condition is assumed, by a strictly algebraic condition which is suitable for use in the infinite dimensional case. (Received October 19, 1943.)

Analysis

18. Stefan Bergman: The determination of singularities of functions satisfying a partial differential equation from the coefficients of their series development.

Let $U(z, \bar{z})=A_{00}+\sum_{m=0}^{\infty} \sum_{m=1}^{\infty} A_{m n} z^{m} \bar{z}^{n}$ be a (complex) solution of the equation $L(U) \equiv U_{z} \bar{z}+a_{1} U_{z}+a_{2} U_{\bar{z}}+a_{3} U=0$ where $a_{k}, k=1,2,3$, are entire functions of two variables $z=x+i y, \bar{z}=x-i y, x, y$ real. Using the results of the papers Rec. Math.

