A CONVERGENCE THEOREM FOR LEBESGUE-STIELTJES INTEGRALS

FUMIO YAGI
This paper deals with the following theorem.
Theorem. Let $g(x)$ be a bounded Borel measurable function defined everywhere on $(-\infty, \infty)$. Let $p_{n}(x)$ be a sequence of normalized functions, ${ }^{1} p_{n} \in V$, such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} V\left(p_{n}\right)<\infty . \tag{1}
\end{equation*}
$$

Then $\sum_{n=1}^{\infty} p_{n}(x)$ is absolutely and uniformly convergent to a normalized function $p(x) \in V$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} g(x) d p_{n}(x)=\int_{-\infty}^{\infty} g(x) d p(x) \tag{2}
\end{equation*}
$$

We shall first prove this theorem in the following special cases:
(a) $g(x)$ is a bounded piecewise absolutely continuous function ${ }^{2}$ in $(-\infty, \infty)$.
(b) $g(x)$ is continuous in a finite interval and vanishes identically outside this finite interval. (It need not necessarily be continuous at the end points of the interval.)
(c) $g(x)$ is a bounded continuous function in $(-\infty, \infty)$.

First let us prove our assertion concerning $p(x)$. Since $p_{n}(x)$ are normalized, we have ${ }^{3} \sum_{n=1}^{\infty}\left|p_{n}(x)\right| \ll \sum_{n=1}^{\infty} P_{n} \ll \sum_{n=1}^{\infty} V\left(p_{n}\right)$ where P_{n} is the upper bound of $\left|p_{n}(x)\right|$ for $-\infty<x<\infty$. Because of (1), it follows that the series $\sum_{n=1}^{\infty} p_{n}(x)$ is absolutely and uniformly convergent. Let $p(x)$ be the limit function. Evidently $p(x)$ is rightcontinuous and normalized. To show that $p(x) \in V$ it is sufficient to show that $p(x)$ is of bounded variation on $(-\infty, \infty)$. For $\xi>0$ and any subdivision of $(-\xi, \xi),-\xi=x_{0}<x_{1}<\cdots<x_{m-1}<x_{m}=\xi$, we

[^0]
[^0]: Received by the editors March 16, 1943. This was Part I of the author's doctor's thesis written at the Massachusetts Institute of Technology. Thanks are due to Professors W. T. Martin and R. H. Cameron for their supervision of the research.
 ${ }^{1} p(x) \in V$ means that $p(x)$ is right-continuous and of bounded variation on the infinite interval $(-\infty, \infty)$. It is normalized if $p(0)=0 . V\left(p_{n}\right)$ denotes the total variation of p_{n} over $(-\infty, \infty)$.
 ${ }^{2} f(x)$ is piecewise absolutely continuous in $(-\infty, \infty)$ if we can divide $(-\infty, \infty)$ into a finite number of intervals such that in each of these intervals $f(x)$ is absolutely continuous.
 ${ }^{3}$ " \ll " is to be read "is dominated termwise by."

