A CONVERGENCE THEOREM FOR LEBESGUE-STIELTJES INTEGRALS

FUMIO YAGI

This paper deals with the following theorem.

THEOREM. Let g(x) be a bounded Borel measurable function defined everywhere on $(-\infty, \infty)$. Let $p_n(x)$ be a sequence of normalized functions, $p_n \in V$, such that

(1)
$$\sum_{n=1}^{\infty} V(p_n) < \infty.$$

Then $\sum_{n=1}^{\infty} p_n(x)$ is absolutely and uniformly convergent to a normalized function $p(x) \in V$, and

(2)
$$\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} g(x) dp_n(x) = \int_{-\infty}^{\infty} g(x) dp(x).$$

We shall first prove this theorem in the following special cases:

(a) g(x) is a bounded piecewise absolutely continuous function² in $(-\infty, \infty)$.

(b) g(x) is continuous in a finite interval and vanishes identically outside this finite interval. (It need not necessarily be continuous at the end points of the interval.)

(c) g(x) is a bounded continuous function in $(-\infty, \infty)$.

First let us prove our assertion concerning p(x). Since $p_n(x)$ are normalized, we have³ $\sum_{n=1}^{\infty} |p_n(x)| \ll \sum_{n=1}^{\infty} P_n \ll \sum_{n=1}^{\infty} V(p_n)$ where P_n is the upper bound of $|p_n(x)|$ for $-\infty < x < \infty$. Because of (1), it follows that the series $\sum_{n=1}^{\infty} p_n(x)$ is absolutely and uniformly convergent. Let p(x) be the limit function. Evidently p(x) is rightcontinuous and normalized. To show that $p(x) \in V$ it is sufficient to show that p(x) is of bounded variation on $(-\infty, \infty)$. For $\xi > 0$ and any subdivision of $(-\xi, \xi), -\xi = x_0 < x_1 < \cdots < x_{m-1} < x_m = \xi$, we

Received by the editors March 16, 1943. This was Part I of the author's doctor's thesis written at the Massachusetts Institute of Technology. Thanks are due to Professors W. T. Martin and R. H. Cameron for their supervision of the research.

¹ $p(x) \in V$ means that p(x) is right-continuous and of bounded variation on the infinite interval $(-\infty, \infty)$. It is normalized if p(0) = 0. $V(p_n)$ denotes the total variation of p_n over $(-\infty, \infty)$.

f(x) is piecewise absolutely continuous in $(-\infty, \infty)$ if we can divide $(-\infty, \infty)$ into a finite number of intervals such that in each of these intervals f(x) is absolutely continuous.

³ "<<" is to be read "is dominated termwise by."