ARTHUR SARD

remarked that Theorem A may well carry, in such a study, a weight greater than that indicated by its relatively minor role in the proof of Theorem B.

UNIVERSITY OF MISSOURI

THE EQUIVALENCE OF *n*-MEASURE AND LEBESGUE MEASURE IN E_n

ARTHUR SARD

Consider a set A of points in euclidean *n*-space E_n . For each countable covering $\{A_i\}$ of A by arbitrary sets consider the sum

$$\sigma = \sum_{i} c_{m} \delta(A_{i})^{m},$$

where *m* is a fixed positive number, $c_m = \pi^{m/2}/2^m \Gamma[(m+2)/2]$, and $\delta(A)$ is the diameter of *A*. The constant c_m is, for integral *m*, the *m*-volume of a sphere of unit diameter in E_m . Let $L_m(A; \alpha)$ be the greatest lower bound of all sums σ corresponding to coverings for which $\delta(A_i) < \alpha$ for all $i \ (\alpha > 0)$. We define the *m*-measure of *A* as $L_m(A) = \lim_{\alpha \to 0} L_m(A; \alpha)$. We denote the outer Lebesgue measure of *A* by |A|.

We shall show that *n*-measure and outer Lebesgue measure are equal: $L_n(A) = |A|$. A statement on this matter by W. Hurewicz and H. Wallman is true but misleading: these authors assert that $L_n(A)/c_n$ and |A| may be unequal.¹

F. Hausdorff has introduced an *m*-measure $L_m^S(A)$ defined as is $L_m(A)$ except that coverings by spheres are used instead of coverings by arbitrary sets. He has shown² that $L_n^S(A) = |A|$. However $L_m(A)$ and $L_m^S(A)$ are unequal in general, as A. S. Besicovitch has shown³ for m = 1, n = 2. S. Saks⁴ and others define *m*-measure as $L_m(A)/c_m$.

Our proof, which is an obvious extension of Hausdorff's proof, depends on two known theorems.

THEOREM I. Of all sets in E_n having a given diameter, the n-sphere has the greatest outer Lebesgue measure.⁵

Received by the editors September 23, 1942, and, in revised form, April 2, 1943.

¹ W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941, p. 104.

² F. Hausdorff, Dimension und äusseres Mass, Math. Ann. vol. 79 (1919) p. 163.

⁸ A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. vol. 98 (1928) pp. 458–464. R. L. Jeffery, Sets of k-extent in n-dimensional space, Trans. Amer. Math. Soc. vol. 35 (1933) p. 634.

⁴ S. Saks, Theory of the integral, Warsaw, 1937, pp. 53-54.