UNIFORM CONVEXITY. III

MAHLON M. DAY

It is the purpose of this note to fill out certain results given in two recent papers on uniform convexity of normed vector spaces.¹ A normed vector space² B is called *uniformly convex* with modulus of convexity δ if for each $\epsilon > 0$ there exists a $\delta(\epsilon) > 0$ such that for every two points b and b' of B satisfying the conditions ||b|| = ||b'|| = 1 and $||b-b'|| \ge \epsilon$ the quantity $||b+b'|| \le 2(1-\delta(\epsilon))$. If $||b_0|| = 1$, B is said to be locally uniformly convex near b_0 if there is a sphere about b_0 in which the condition for uniform convexity holds. Theorem 1 shows that all properties of normed vector spaces which are invariant under isomorphism are the same for uniformly convex and locally uniformly convex spaces. Theorem 2 gives a necessary condition for isomorphism with a uniformly convex space. The condition is in terms of isomorphisms of finite dimensional subspaces and is suggested by examples given in [I]; it is not known whether the condition is sufficient. Theorem 3 is somewhat more general than Theorem 3 of [II]; it uses uniformly convex function spaces instead of the l_p spaces of [II].

A cone C in B is a set which contains all of every half line from the origin through each point of C.

LEMMA 1. A normed vector space B is locally uniformly convex near b_0 if and only if there exists a convex cone C, with b_0 in its interior, such that for every ϵ there is a $\delta_1(\epsilon) > 0$ such that the conditions $||b|| \leq 1$, $||b'|| \leq 1$, and $||b-b'|| \geq \epsilon$ imply $||b+b'|| \leq 2(1-\delta_1(\epsilon))$ for every pair of points b and b' in C.

If this condition is satisfied there is obviously a sphere about b_0 inside *C*, so that in that sphere $\delta(\epsilon)$ can be taken equal to $\delta_1(\epsilon)$. On the other hand, if there is a sphere of radius 2k about b_0 in which δ can be defined, it can be shown that it suffices to let *C* be the cone through points of the sphere of radius *k* about b_0 and to let $\delta_1(\epsilon) = \inf [\epsilon/10, \delta(4\epsilon/5)/2]$.

LEMMA 2. If the cone C of Lemma 1 contains a sphere about b_0 of radius k, if $||b|| \leq 1$ and if $||b-b_0|| \geq k$, then $||b+b_0|| < 2-\delta_1(k)$.

Presented to the Society, April 24, 1943; received by the editors January 25, 1943.

¹ These papers are [I] Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 313–317, and [II] Some more uniformly convex spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 504–507.

² See Banach, Théorie des opérations linéaires, Warsaw, 1932, for general definitions.