TWO NOTES ON MEASURE THEORY

EDWIN HEWITT

I. In a recent paper [1], ${ }^{1}$ Saks has indicated a construction whereby a Carathéodory outer measure can be produced on any compact metric space M, provided that a certain linear functional Φ is defined on the set \mathfrak{C} of all continuous real-valued functions whose domain is M. The functional Φ is required to be non-negative for non-negative functions, and to have the property that if the sequence $\left\{f_{n}\right\}$ has the uniform limit 0 , then the sequence $\Phi\left(f_{n}\right)$ is a null-sequence. (The measure itself can be defined without this last property.) The purpose of this note is to show that such a linear functional always exists, in a non-trivial form, specifically, so that $\Phi(1)=1$.

We consider the set \mathfrak{C} as a linear space, and together with \mathfrak{C} the linear space $\Omega \subset \mathfrak{C}$, where Ω consists of all constant functions. On the entire space \mathfrak{C}, we define a functional $p(f)=\sup _{x \in M} f(x)$. This least upper bound always exists, since M, being a compact metric space, is a bicompact space, on which every continuous real-valued function is bounded. It is easy to verify that $p(f+g) \leqq p(f)+p(g)$, for all $f, g \in \mathfrak{G}$, and that $p(t f)=t p(f)$ whenever t is a non-negative real number. We define a linear functional Φ on the subspace Ω as follows: $\Phi(f)=f(x)$ for an arbitrary $x \in M$. It is clear that $\Phi(f)=p(f)$ for $f \in \Omega$ and that Φ is linear on Ω. By virtue of the celebrated theorem of Hahn-Banach, it appears that Φ can be extended linearly to all of \mathfrak{C} in such a fashion that $\Phi(f) \leqq p(f)$ for all $f \in \mathbb{C}$. We further observe that Φ may be taken non-negative for non-negative functions. For, if Φ has been defined by the Hahn-Banach construction for all $f \in \mathfrak{B}$, where $\mathfrak{\Omega} \subset \mathfrak{B} \subset \mathfrak{C}, \mathfrak{B} \neq \mathfrak{G}$, and if $g \in \mathfrak{C}-\mathfrak{B}$ and $g \geqq 0$, then the number $a=\inf _{f \in \mathfrak{F}}(p(f+g)-\Phi(f))$ is an upper bound to possible values for $\Phi(g) . a$, however, is plainly non-negative, so that $\Phi(g)$ may always be taken non-negative. Suppose now that the sequence of functions $\left\{f_{n}\right\}$ has the uniform limit 0 . The function $\epsilon-f_{n}$ is nonnegative for all $n>N(\epsilon), N(\epsilon)$ being some natural number dependent upon the arbitrary positive number ϵ. Accordingly, $\Phi\left(\epsilon-f_{n}\right)=\Phi(\epsilon)$ $-\Phi\left(f_{n}\right)=\epsilon \Phi(1)-\Phi\left(f_{n}\right)=\epsilon-\Phi\left(f_{n}\right) \geqq 0$. Likewise, it is easy to show that $\epsilon+\Phi\left(f_{n}\right) \geqq 0$ for all sufficiently large n. It follows at once that $\lim _{n \rightarrow \infty} \Phi\left(f_{n}\right)=0$. It is proved in Saks [1] that the functional Φ can

[^0]
[^0]: Received by the editors January 7, 1943.
 ${ }^{1}$ Numbers in brackets refer to correspondingly numbered articles in the bibliography at the end of the paper.

