TWO NOTES ON MEASURE THEORY

EDWIN HEWITT

I. In a recent paper [1],¹ Saks has indicated a construction whereby a Carathéodory outer measure can be produced on any compact metric space M, provided that a certain linear functional Φ is defined on the set \mathfrak{C} of all continuous real-valued functions whose domain is M. The functional Φ is required to be non-negative for non-negative functions, and to have the property that if the sequence $\{f_n\}$ has the uniform limit 0, then the sequence $\Phi(f_n)$ is a null-sequence. (The measure itself can be defined without this last property.) The purpose of this note is to show that such a linear functional always exists, in a non-trivial form, specifically, so that $\Phi(1) = 1$.

We consider the set \mathfrak{C} as a linear space, and together with \mathfrak{C} the linear space $\Re \subset \mathbb{C}$, where \Re consists of all constant functions. On the entire space \mathfrak{G} , we define a functional $p(f) = \sup_{x \in M} f(x)$. This least upper bound always exists, since M, being a compact metric space, is a bicompact space, on which every continuous real-valued function is bounded. It is easy to verify that $p(f+g) \leq p(f) + p(g)$, for all f, $g \in \mathbb{G}$, and that p(tf) = tp(f) whenever t is a non-negative real number. We define a linear functional Φ on the subspace \Re as follows: $\Phi(f) = f(x)$ for an arbitrary $x \in M$. It is clear that $\Phi(f) = \rho(f)$ for $f \in \Re$ and that Φ is linear on \Re . By virtue of the celebrated theorem of Hahn-Banach, it appears that Φ can be extended linearly to all of \mathfrak{C} in such a fashion that $\Phi(f) \leq p(f)$ for all $f \in \mathfrak{C}$. We further observe that Φ may be taken non-negative for non-negative functions. For, if Φ has been defined by the Hahn-Banach construction for all $f \in \mathfrak{B}$, where $\mathfrak{R} \subset \mathfrak{B} \subset \mathfrak{C}$, $\mathfrak{B} \neq \mathfrak{C}$, and if $g \in \mathfrak{C} - \mathfrak{B}$ and $g \geq 0$, then the number $a = \inf_{f \in \mathfrak{B}} (p(f+g) - \Phi(f))$ is an upper bound to possible values for $\Phi(g)$. a, however, is plainly non-negative, so that $\Phi(g)$ may always be taken non-negative. Suppose now that the sequence of functions $\{f_n\}$ has the uniform limit 0. The function $\epsilon - f_n$ is nonnegative for all $n > N(\epsilon)$, $N(\epsilon)$ being some natural number dependent upon the arbitrary positive number ϵ . Accordingly, $\Phi(\epsilon - f_n) = \Phi(\epsilon)$ $-\Phi(f_n) = \epsilon \Phi(1) - \Phi(f_n) = \epsilon - \Phi(f_n) \ge 0$. Likewise, it is easy to show that $\epsilon + \Phi(f_n) \geq 0$ for all sufficiently large n. It follows at once that $\lim_{n\to\infty} \Phi(f_n) = 0$. It is proved in Saks [1] that the functional Φ can

Received by the editors January 7, 1943.

¹ Numbers in brackets refer to correspondingly numbered articles in the bibliography at the end of the paper.