A NOTE ON DIFFERENTIAL POLYNOMIALS

A. P. HILLMAN

The following theorem indicates to what extent the expression of a differential polynomial ${ }^{1} G$ as an element of the differential ideal determined by F is unique.

Theorem I. Let $F \neq 0, C_{0}, C_{1}, \cdots, C_{s}$ be differential polynomials in the unknowns y_{1}, \cdots, y_{n} with coefficients in an abstract differential field 7 . Let $F^{(i)}$ be the ith derivative of F and let

$$
\begin{equation*}
C_{0} F+C_{1} F^{\prime}+\cdots+C_{s} F^{(s)} \tag{1}
\end{equation*}
$$

be identically zero. Then each C_{i} is in the perfect ideal generated by $F .{ }^{2}$
We need merely show that any solution $y_{j}=\bar{y}_{j}(j=1, \cdots, n)$, in any extension \mathscr{F}_{1} of \mathcal{F}, of the form F is a solution of each $C_{i} .{ }^{3}$ Since this is true if F has no solutions, we may assume that F effectively involves the unknowns. Make the substitution $y_{j}=z_{j}+\bar{y}_{j}$ in (1). Let A consist of the terms of F of lowest degree in the z_{j} and their derivatives. Collecting terms of the same degree, we see that

$$
\begin{equation*}
C_{0}(\bar{y}) A+\cdots+C_{s}(\bar{y}) A^{(s)}=0 \tag{2}
\end{equation*}
$$

where $C_{i}(\bar{y})$ is the element of \mathcal{F}_{1} obtained by substituting $y_{j}=\bar{y}_{j}$ $(j=1, \cdots, n)$ in C_{i}. Let A be of order $p \geqq 0$ in some z_{k} which it effectively involves, let $z_{k, m}$ be the m th derivative of z_{k}, and let S be the partial derıvative of A with respect to $z_{k, p}$. For $i>0, A^{(i)}$ can be written as $S z_{k, p+i}+B_{i}$, where B_{i} is some form of order less than $p+i$ in z_{k}. Now (2) becomes

$$
\begin{equation*}
C_{s}(\bar{y}) S z_{k, p+s}+D=0 \tag{3}
\end{equation*}
$$

where D has order less than $p+s$ in z_{k}. Hence $C_{s}(\bar{y})=0$. In turn C_{s-1}, \cdots, C_{0} must vanish for $y_{j}=\bar{y}_{j}$ as desired.

Using the ideas of the above proof together with a uniqueness result of J. F. Ritt, ${ }^{4}$ one can very easily prove the following generalization.

[^0]
[^0]: Received by the editors January 4, 1943.
 ${ }^{1}$ For definitions of differential fields, polynomials, and ideals, see H. W. Raudenbush, Ann. of Math. (2) vol. 34 (1933) pp. 509-517.
 ${ }^{2}$ For a result analogous to Theorem I for ordinary polynomials, see Satz 1 of E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. vol. 60 (1905) pp. 20-116.
 ${ }^{3}$ H. W. Raudenbush, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 361-368.
 ${ }^{4}$ On singular solutions \cdot. , Ann. of Math. vol. 37 (1936) pp. 552-617, §§1-3.

