A NOTE ON DIFFERENTIAL POLYNOMIALS

A. P. HILLMAN

The following theorem indicates to what extent the expression of a differential polynomial¹ G as an element of the differential ideal determined by F is unique.

THEOREM I. Let $F \neq 0$, C_0 , C_1 , \cdots , C_s be differential polynomials in the unknowns y_1 , \cdots , y_n with coefficients in an abstract differential field \mathcal{J} . Let $F^{(i)}$ be the *i*th derivative of F and let

$$(1) C_0F + C_1F' + \cdots + C_sF^{(s)}$$

be identically zero. Then each C_i is in the perfect ideal generated by F^2 .

We need merely show that any solution $y_j = \bar{y}_j$ $(j=1, \dots, n)$, in any extension \mathcal{J}_1 of \mathcal{J} , of the form F is a solution of each C_i .³ Since this is true if F has no solutions, we may assume that F effectively involves the unknowns. Make the substitution $y_j = z_j + \bar{y}_j$ in (1). Let A consist of the terms of F of lowest degree in the z_j and their derivatives. Collecting terms of the same degree, we see that

(2)
$$C_0(\bar{y})A + \cdots + C_s(\bar{y})A^{(s)} = 0,$$

where $C_i(\bar{y})$ is the element of \mathcal{J}_1 obtained by substituting $y_j = \bar{y}_j$ $(j=1, \dots, n)$ in C_i . Let A be of order $p \ge 0$ in some z_k which it effectively involves, let $z_{k,m}$ be the *m*th derivative of z_k , and let S be the partial derivative of A with respect to $z_{k,p}$. For i > 0, $A^{(i)}$ can be written as $Sz_{k,p+i}+B_i$, where B_i is some form of order less than p+i in z_k . Now (2) becomes

$$C_s(\bar{y})Sz_{k,p+s} + D = 0$$

where D has order less than p+s in z_k . Hence $C_s(\bar{y}) = 0$. In turn C_{s-1}, \cdots, C_0 must vanish for $y_j = \bar{y}_j$ as desired.

Using the ideas of the above proof together with a uniqueness result of J. F. Ritt,⁴ one can very easily prove the following generalization.

Received by the editors January 4, 1943.

¹ For definitions of differential fields, polynomials, and ideals, see H. W. Raudenbush, Ann. of Math. (2) vol. 34 (1933) pp. 509-517.

² For a result analogous to Theorem I for ordinary polynomials, see Satz 1 of E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. vol. 60 (1905) pp. 20-116.

⁸ H. W. Raudenbush, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 361-368.

⁴ On singular solutions · · · , Ann. of Math. vol. 37 (1936) pp. 552-617, §§1-3.