EXACT *n*TH DERIVATIVES

HOWARD LEVI

Let y be a function of x with derivatives of all orders, and let θ be a function of x, y, and a finite number of derivatives of y. If, independently of the choice of the function y, θ is the *n*th total derivative of some function ψ of x, y, and derivatives of y, then we shall call θ an exact nth derivative. The problem with which this note is concerned is to determine, for any given function θ and positive integer n, if θ is an exact nth derivative. The case for which n=1 is completely covered by the well known Euler differential equation which arises in the simplest problem of the calculus of variations. For a function θ to be an exact first derivative, it is necessary and sufficient that θ satisfy the Euler differential equation. The contribution of this paper is the treatment of the cases in which n exceeds unity. A system of n differential equations is developed, satisfaction of which by θ constitutes a necessary condition that θ be an exact *n*th derivative. These equations do not yield an altogether satisfactory sufficient condition. It turns out that if θ satisfies the equations in question, it may still fail to be an exact *n*th derivative. However, under these circumstances, θ must differ from an exact *n*th derivative by a function of very special character.

Notation. Let us suppose y to be an arbitrary function of x possessing derivatives of all orders. We shall denote the *j*th derivative of y with respect to x by y_j , and sometimes denote y itself by y_0 . We suppose θ to be a function of x, y, and of finitely many of the y_j , possessing partial derivatives of all orders with respect to all its arguments. The operation of differentiation with respect to x will be indicated by the symbol D; thus $D = \partial/\partial x + \sum y_{i+1}\partial/\partial y_i$. We shall understand that the range of the subscript *i* in D extends from zero to plus infinity, recognizing that when D operates on a function of x, y, and of finitely many of the y_j it reduces to a finite sum. The symbol D^i , where *i* is a positive integer, will denote the operation of taking the *i*th derivative. We shall use the expression $C_{p,q}$ to denote the binomial coefficient $p \cdot (p-1) \cdot \cdot \cdot (p-q+1)/q!$ where q is a nonnegative integer and p is any integer.

Summary of results. Let *n* be a positive integer. Let operators E_t , $t=1, \dots, n$, be defined as follows. Expand, formally, $E_t = (1+D\partial/\partial y_1)^{-t}\partial/\partial y$ as the product by $\partial/\partial y$ of a power series in $D\partial/\partial y_1$, and replace terms $(D\partial/\partial y_1)^{i}\partial/\partial y$ by $D^{i}\partial/\partial y_i$. Let there be a

Received by the editors January 15, 1943.