ON AUTOMORPHISMS OF COMPACT GROUPS

PAUL R. HALMOS

1. Introduction and definitions. Let G be a compact abelian group and α a continuous automorphism of G. We write G multiplicatively and use, accordingly, the exponent notation for automorphisms. Thus the image under α of the element $x \in G$ will be denoted by x^{α} ; similarly we shall write for (complex valued) functions f(x), $f^{\alpha}(x) = f(x^{\alpha})$.

If m is Haar measure² in G (normalized so that m(G) = 1) we consider the set function $m'(E) = m(E^{\alpha})$. (E^{α} is the set of all x^{α} , $x \in E$.) Since m' is a measure on G possessing all defining properties of m it follows from the uniqueness of Haar measure³ that m'(E) = m(E) for every measurable set E. In other words α is a measure preserving transformation of G; the purpose of this note is to investigate a few simple properties of α from the point of view of measure theory.

We shall make use of the Pontrjagin duality theory,⁴ and, in particular, we shall need the fact that the group of automorphisms of G is essentially the same as that of the character group G^* . More precisely: if to any $\phi = \phi(x) \in G^*$ we make correspond $\phi^{\alpha} = \phi^{\alpha}(x) = \phi(x^{\alpha})$, then $\phi^{\alpha} \in G^*$, and the correspondence $\phi \to \phi^{\alpha}$ is an automorphism of G^* . The duality theory also enables us to reverse this argument: every automorphism of G^* is induced in this way by a continuous automorphism of G.

We recall some standard definitions from ergodic theory. A measure preserving transformation α (not necessarily an automorphism) is *ergodic* if the only (complex valued, measurable) solutions f of the equation $f^{\alpha} = f$ are constant almost everywhere. The transformation α is *mixing* if the only (complex valued, measurable) solutions f of the equation $f^{\alpha} = \lambda f$, for any constant λ , are constant almost everywhere. (It is true, though irrelevant, that for $\lambda \neq 1$ even a constant fails to be a solution unless it is zero.) It is well known that the mapping

Presented to the Society, December 27, 1942; received by the editors November 23, 1942.

¹ This notation dovetails, as usual, with ordinary exponentiation in G; thus $x^{3\alpha^2} = (x^0)^{\alpha^2} = (x^{\alpha^2})^3$, and so on.

² For a general discussion of measure theory in topological groups see A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris, 1938.

³ Weil, op. cit., pp. 36-38.

⁴ Weil, op. cit., chap. 6.

⁵ See E. Hopf, *Ergodentheorie*, Berlin, 1937, chap. 3, for a discussion of the fact that these definitions are equivalent to the ones more commonly given.