THE STRONGER FORM OF CAUCHY'S INTEGRAL THEOREM

E. F. BECKENBACH

1. Introduction. The so-called weaker and stronger forms ${ }^{1}$ of Cauchy's integral theorem are the following.

Theorem 1. Cauchy's integral theorem (weaker form). If $f(z)$ is holomorphic on the finite simply-connected open domain D, and if C is a closed rectifiable curve in D, then

$$
\int_{C} f(z) d z=0 .
$$

Theorem 2. Cauchy's integral theorem (stronger form). If $f(z)$ is holomorphic on the interior D of a simply closed rectifiable curve C, and continuous on $D+C$, then

$$
\begin{equation*}
\int_{C} f(z) d z=0 . \tag{1}
\end{equation*}
$$

Each of these theorems follows readily when it has been established that there is a sequence of closed curves $\left\{C_{n}\right\}$ in D, of uniformly bounded length, converging in the sense of Fréchet to C, such that

$$
\int_{C_{n}} f(z) d z=0
$$

In the case of Theorem 2 it appears to be more difficult to establish the existence of the sequence $\left\{C_{n}\right\}$, since the convergence must be from only one side; but the difficulty may be overcome by more or less tedious topological considerations, a program which has been undertaken by a number of authors. ${ }^{2}$ Recent excellent proofs by Reid and Hestenes, loc. cit., appear to be about as simple as a valid elementary proof of this result could be.

The above type of proof applies equally well to yield the corresponding stronger form of Green's lemma, as some authors have

[^0]
[^0]: Presented to the Society, December 27, 1942; received by the editors November 4, 1942.
 ${ }^{1}$ This terminology is taken from M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge, England, 1939, pp. 154, 156.
 ${ }^{2}$ For bibliographical discussions see S. Pollard, On the conditions for Cauchy's theorem, Proc. London Math. Soc. vol. 21 (1923) pp. 456-482; E. Kampe, Zu dem Integralsatz von Cauchy, Math. Zeit. vol. 35 (1932) pp. 539-543; W. T. Reid, Green's lemma and related results, Amer. J. Math. vol. 63 (1941) pp. 563-574; M. R. Hestenes, An analogue of Green's theorem in the calculus of variations, Duke Math. J. vol. 8 (1941) pp. 300-311.

