ON THE CROSSING OF EXTREMALS AT FOCAL POINTS

L. J. SAVAGE

Morse and Littauer ${ }^{1}$ have proved the following theorem for an analytic Finsler space, where g is an extremal transversal to the (analytic) hypersurface Σ.

Theorem. A necessary and sufficient condition that p on g be a focal point of Σ is that the family of extremals cut transversaly by Σ near g shall fail to cover the neighborhood of p simply.

The purpose of the present paper is to prove this theorem on the weaker hypothesis that the Finsler space and Σ are of class $C^{\prime \prime \prime}$.

As pointed out in M. L. the sufficiency of the condition is trivial, and in proving the necessity there is no loss in generality if we assume p to be a first focal point. It is further clear from M. L. that the theorem is a consequence of the following lemma.

Lemma I. If p is a first focal point on g contained in a (simply covering) field R of extremals transversal to Σ, then there exists a first focal point q covered by R and a subfield S of R covering q and such that the Hilbert integral is independent of path for paths confined to S.

Before proceeding to the proof of Lemma I we will establish a secondary lemma.

Lemma II. Let T be a transformation of class C^{\prime} mapping a closed coordinate neighborhood A into a closed Riemannian manifold B, then almost all points of B (in the measure theoretic sense) have finite counter images.

Proof. Call the set of points $K \subset A$ at which the Jacobian of T vanishes critical points, then I assert that if the counter image $T^{-1} b$, $b \in B$, is infinite, it contains a critical point. In fact if b^{i} are the coordinates of such a point b, there is a convergent sequence of points of $T^{-1} b$ with coordinates a_{σ}^{i} approaching a point a_{0} from a definite direction, as is expressed by the following set of equations.

$$
\begin{gather*}
a_{\sigma}^{i} \rightarrow a_{0}^{i}, \xi_{\sigma}^{i}=\left(a_{\sigma}^{i}-a_{0}^{i}\right) /\left(\Sigma_{i}\left(a_{\sigma}^{i}-a_{0}^{i}\right)^{2}\right)^{1 / 2} \rightarrow \xi_{0}^{i}, \\
T^{i}\left(a_{\sigma}^{j}\right)=b^{i}=T^{i}\left(a_{0}^{j}\right) . \tag{1}
\end{gather*}
$$

[^0]
[^0]: Received by the editors November 5, 1942.
 ${ }^{1}$ Marston Morse and S. B. Littauer, A characterization of fields in the calculus of variations, Proc. Nat. Acad. Sci. U.S.A. vol. 18 (1932) pp. 724-730. This paper will hereafter be designated by M. L.

