ON NON-DENUMERABLE GRAPHS

P. ERDÖS AND S. KAKUTANI

The present paper consists of two parts. In Part 1 we prove a theorem on the decomposition of a complete graph. This result is then applied in Part 2 to show that the continuum hypothesis is equivalent to the possibility of decomposing the set of all real numbers into a countable number of summands each consisting of rationally independent numbers.

PART 1

A graph G is complete if every pair of points of G is connected by one and only one segment. G is called a tree if it does not contain any closed polygon.

THEOREM 1. A complete graph of cardinal number m (that is, the cardinal number of the vertices is m) can be split up into a countable number of trees if and only if $m \leq \aleph_1$.

PROOF. We shall first prove that every complete graph of power \aleph_1 can be split up into the countable sum of trees.¹ Let G be a complete graph of cardinal number \aleph_1 . Let $\{x_{\alpha}\}, \alpha < \omega_1$, be any well ordered set of power \aleph_1 . We may assume that G is represented by a system of segments $(x_{\alpha}, x_{\beta}), \alpha < \beta < \omega_1$. For any $\beta < \omega_1$ arrange the set of all $\alpha < \beta$ into a sequence $\alpha_{\beta,n}, n = 1, 2, \cdots$, and let G_n be the set of all segments (x_{α}, x_{β}) such that $\alpha = \alpha_{\beta,n}$. It is clear that $G = \bigcup_{n=1}^{\infty} G_n$ and that for each G_n , for every $\beta < \omega_1$, there exists one and only one α such that $(x_{\alpha}, x_{\beta}) \in G_n$ and $\alpha < \beta$. From this last fact it is clear that G_n does not contain any closed polygon.

Conversely, let us assume that a complete graph G of cardinal number m is split up into a countable number of trees T_n ; $G = \bigcup_{n=1}^{\infty} T_n$. We shall prove that $m \leq \aleph_1$. We can again assume that G is represented by a system of segments $(x_{\alpha}, x_{\beta}), \alpha < \beta < \phi$, where $\{x_{\alpha}\}, \alpha < \phi$, is a well ordered set of cardinal number m.

We shall first decompose each T_n into four parts $T_{n,i}$, i = 1, 2, 3, 4, such that $T_{n,1}$ and $T_{n,2}$ satisfy the condition:

(1) Any two consecutive segments of the graphs $T_{n,1}$ and $T_{n,2}$ are of the form: $(x_{\alpha}, x_{\beta}), (x_{\alpha}, x_{\gamma}), \alpha < \beta, \alpha < \gamma, \beta \neq \gamma$. And $T_{n,3}, T_{n,4}$ satisfy:

(2) Any two consecutive segments of the graphs are of the form: $(x_{\beta}, x_{\alpha}), (x_{\gamma}, x_{\alpha}), \beta < \alpha, \gamma < \alpha, \beta \neq \gamma.$

Received by the editors September 18, 1942.

¹ This result was also obtained by J. Tukey, oral communication.