THE BETTI GROUPS OF SYMMETRIC AND CYCLIC PRODUCTS

C. E. CLARK

1. Introduction. Consider a finite complex K and a group of permutations of n elements $G = \{G_{\lambda}\}, \lambda = 1, \dots, N$. To define the product k^n of K with respect to G, $n = 2, 3, \dots$, we consider an ordered set of n complexes K_1, \dots, K_n each homeomorphic to K; here as throughout the paper we do not distinguish between a complex and a geometric realization of the complex. A point p of the topological product $K^n = K_1 \times \cdots \times K_n$ can be represented by the sequence of points $p_1, \dots, p_n, p_i \in K_i$. Each function $G_{\lambda}(p), \lambda = 1, \dots, N$, gives a homeomorphism of K^n upon itself. We identify each point $p \in K^n$ with all its transforms $G_{\lambda}(p), \lambda = 1, \dots, N$. The resulting continuous image of K^n is k^n . If G is the symmetric group or the cyclic group of permutations of n elements, the product k^n is called the n-fold symmetric product or the n-fold cyclic product of K, respectively.

In this paper we study the integral cohomology groups of k^n . Our Theorem 1 gives a convenient method for calculating these groups when G is given. The method is used to construct the cohomology groups when G is either symmetric or cyclic.

The method of this paper differs from that of the earlier papers [3] and [5] of the references at the end of this paper in the following way. All treatments consider Richardson's simplicial transformation Λ of K^n upon k^n . But Richardson and Walker use Λ to determine a transformation of cycles of K^n into cycles of k^n , while this paper considers the natural transformation of cocycles is 1^{n} into cocycles of K^n into cocycles of K^n . The earlier correspondence of cycles is not (1-1), but the present correspondence of cocycles is (1-1). This fact enables us to get new results.

2. The general theorem. By definition k^n is obtained by identifying points of K^n . This identification gives a continuous transformation Λ of K^n upon k^n . Richardson has shown¹ that K^n and k^n can be subdivided into simplicial complexes and the simplexes of these complexes so oriented that Λ is simplicial, G_{λ} is simplicial, $\lambda = 1, \dots, N$, and for any oriented simplex x of K^n

(1)
$$\Lambda x = \Lambda G_{\lambda} x, \qquad \lambda = 1, \cdots, N.$$

Received by the editors September 2, 1942.

¹ See [**3**, §5].