THE DISTRIBUTION OF INTEGERS REPRESENTED BY BINARY QUADRATIC FORMS

GORDON PALL

R. D. James ${ }^{1}$ has proved the following theorem:

Theorem 1. Let $B(x)$ denote the number of positive integers $m \leqq x$ which can be represented by positive, primitive, binary quadratic forms of a given negative discriminant d, but are prime to d. Then

$$
\begin{equation*}
B(x)=b x /(\log x)^{1 / 2}+O(x / \log x), \tag{1}
\end{equation*}
$$

where b is the positive constant given by

$$
\begin{equation*}
\pi b^{2}=\prod_{q}\left(1-1 / q^{2}\right)^{-1} \prod_{p \mid d}(1-1 / p) \sum_{n=1}^{\infty}(d \mid n) n^{-1} \tag{2}
\end{equation*}
$$

Here q runs over all primes such that $(d \mid q)=-1 ; p$ denotes any prime greater than or equal to 2 ; and $(d \mid n)$ is the Kronecker symbol.

We shall deduce from his result an asymptotic formula with the restriction that m be prime to d removed.

First, let p be a prime dividing d but not satisfying

$$
\begin{equation*}
p>2 \text { and } p^{2} \mid d, \text { or } p=2 \text { and } d \equiv 0 \text { or } 4(\bmod 16) . \tag{3}
\end{equation*}
$$

Then $p n$ is represented by p. p. b. q. forms of discriminant d if and only if n is likewise represented. ${ }^{2}$ Hence if $p^{r} \leqq(\log x)^{1 / 2}$ then the number of represented integers less than or equal to x of the form $p^{r} m$ with m prime to d, is

$$
\frac{b x / p^{r}}{\left(\log x / p^{r}\right)^{1 / 2}}+O\left(\frac{x / p^{r}}{\left(\log x / p^{r}\right)}\right)=\frac{b x / p^{r}}{(\log x)^{1 / 2}}+O\left(\frac{x / p^{r}}{\log x}\right)
$$

since $\left(\log x p^{-r}\right)^{-1 / 2}-(\log x)^{-1 / 2}=O\left(\left(\log p^{r}\right) /(\log x)^{3 / 2}\right)$. Also, if $p^{s}>(\log x)^{1 / 2}$,

$$
\left(b x /(\log x)^{1 / 2}\right)\left(1 / p^{s}+1 / p^{s+1}+\cdots\right)=O(x /(\log x)) .
$$

Hence the number of positive integers less than or equal to x, represented by p.p.b.q. forms of discriminant d, and prime to d except that they need not be prime to p, is given by

[^0]
[^0]: Presented to the Society, September 10, 1942; received by the editors August 4, 1942.
 ${ }^{1}$ R. D. James, Amer. J. Math. vol. 60 (1938) pp. 737-744.
 ${ }^{2}$ G. Pall, Math. Zeit. vol. 36 (1933) pp. 321-343, p. 331.

