THE PELL EQUATION IN QUADRATIC FIELDS

IVAN NIVEN

Consider the equation

$$
\begin{equation*}
\xi^{2}-\gamma \eta^{2}=1 \tag{1}
\end{equation*}
$$

where γ is a given integer of a quadratic field F, and integral solutions ξ, η are sought in F. It has been shown ${ }^{1}$ that equation (1) has an infinite number of solutions if and only if γ is not totally negative when F is a real field, and γ is not the square of an integer of F when F is imaginary. We now obtain the following result:

Let γ be such that equation (1) has an infinite number of solutions. If F is a real field it is possible to find a solution ξ_{1}, η_{1} of (1) so that every solution is given by the equations

$$
\begin{align*}
& \xi=\left\{\left(\xi_{1}+\gamma^{1 / 2} \eta_{1}\right)^{n}+\left(\xi_{1}-\gamma^{1 / 2} \eta_{1}\right)^{n}\right\} / 2 \\
& \eta=\left\{\left(\xi_{1}+\gamma^{1 / 2} \eta_{1}\right)^{n}-\left(\xi_{1}-\gamma^{1 / 2} \eta_{1}\right)^{n}\right\} /\left(2 \gamma^{1 / 2}\right), \quad n=1,2,3, \cdots, \tag{2}
\end{align*}
$$

if and only if γ is not a totally positive non-square integer of F. If F is imaginary it is always possible to find a solution ξ_{1}, η_{1} so that all solutions are given by (2).

The latter result is known to hold for the Pell equation in the rational field. The expression $\gamma^{1 / 2}$ is ambiguous, but no confusion will arise provided it consistently has the same value (we shall specify its value in certain cases). We consider the four sets $\pm \xi, \pm \eta$ to be a single solution, so that equations (2) give "every solution" in the sense that one of the four is present for some value of n.

Case 1. F real, γ positive but not totally positive. It will be convenient to consider $\gamma^{1 / 2}, \xi$ and η positive. We now show that there is but a finite number of solutions of (1) with ξ bounded, say $\xi<N$. For suppose we have an infinitude of solutions ξ_{i}, η_{i} with $\xi_{i}<N$ for $i=1,2,3, \cdots$ Taking conjugates in equation (1) we would have

$$
\bar{\xi}_{i}^{2}-\bar{\gamma}_{\bar{\eta}_{i}^{2}}^{2}=1
$$

and since $-\bar{\gamma}$ is positive, this implies that $\bar{\xi}_{i} \leqq 1$ for $i=1,2,3, \cdots$. But it is not possible to have an infinite set of real quadratic integers which, along with their conjugates, are bounded.

[^0]
[^0]: Presented to the Society, November 28, 1942; received by the editors August 8, 1942.
 ${ }^{1}$ Quadratic diophantine equations in the rational and quadratic fields, Trans. Amer. Math. Soc. vol. 52 (1942) p. 2 Theorem 4. We refer to this paper as (Q).

