$$
Q_{1}=2 x_{1}^{2}-x_{2}^{2}, \quad Q_{2}=x_{1}^{2}-2 x_{2}^{2}
$$

admit the definite linear combination $Q_{1}-Q_{2}=x_{1}^{2}+x_{2}^{2}$, and the corresponding system (5) admits the indefinite solution $B=x_{1} x_{2}$.

Example 2. The three forms

$$
Q_{1}=2 x_{1}^{2}-x_{2}^{2}, \quad Q_{2}=x_{1}^{2}-2 x_{2}^{2}, \quad Q_{3}=x_{1} x_{2}
$$

admit the definite linear combination $Q_{1}-Q_{2}-Q_{3}=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}$, but the corresponding system (5) admits no solution form B.

Carnegie Institute of Technology

NOTE ON A CON JECTURE DUE TO EULER

Е. T. BELL

Euler's conjecture (1772) that

$$
x_{1}^{n}+\cdots+x_{t}^{n}=x^{n}
$$

where n is an integer greater than 3 and $2<t<n$, has no solution in rational numbers x_{1}, \cdots, x_{t}, x all different from zero, is still unsettled even in its first case, $n=4, t=3$. It may therefore be of some interest to note a solution of this equation for any $n>3$ and any $t>1$ in terms of (irrational) algebraic numbers, which can be made algebraic integers by suitable choice of a homogeneity parameter, all different from zero, all the numbers being polynomials in numbers of degree $2 d$, where $4 d \leqq 2 n-5+(-1)^{n}$. If solutions differing only by a parameter are not considered distinct, there are at least d^{t-1} sets of solutions x_{1}, \cdots, x_{t}, x.

The solutions described are

$$
\begin{gathered}
x_{1}=u, \quad x_{2}=r_{t-1} u, \quad x=\left(1+r_{1}\right) \cdots\left(1+r_{t-1}\right) u ; \\
x_{j}=r_{t-j+1}\left(1+r_{t-j+2}\right)\left(1+r_{t-j+3}\right) \cdots\left(1+r_{t-1}\right) u, \quad j=3, \cdots, t,
\end{gathered}
$$ where u is a parameter and the r 's are any roots, the same or different, of any factor $F_{n}(r)$, irreducible in the field of rational numbers, of

$$
f(r) \equiv \sum_{s=1}^{n-1}(n, s) r^{n-s-1}
$$

Received by the editors July 9, 1942.

