ON LINEAR COMBINATIONS OF QUADRATIC FORMS

LLOYD L. DINES

The characteristics of linear combinations $\sum \lambda_{i} Q_{i}(x)$ of a given set of real quadratic forms

$$
\begin{equation*}
Q_{i}(x) \equiv \sum_{k, l=1}^{n} a_{k l}^{i} x_{k} x_{l}, \quad i=1,2, \cdots, m \tag{1}
\end{equation*}
$$

have been considered in several recent papers. ${ }^{1}$
One of the theorems in my earlier paper may be stated as follows:
A necessary and sufficient condition that there exist a linear combination $\sum \lambda_{i} Q_{i}(x)$ which is positive definite is that there exist no set of points $x^{j}=\left(x_{1}^{j}, x_{2}^{j}, \cdots, x_{n}^{j}\right) \neq(0, \cdots, 0)(j=1,2, \cdots, r)$ such that

$$
\begin{equation*}
\sum_{j=1}^{r} \mu_{j} Q_{i}\left(x^{i}\right)=0, \quad i=1,2, \cdots, m \tag{2}
\end{equation*}
$$

the coefficients μ_{j} being positive.
Shortly after the publication of this paper, Fritz John kindly called my attention to the fact that a closely related result is contained in an earlier paper of his. ${ }^{2}$

Certainly John's paper contains essentially the "sufficiency" half of the theorem quoted above. Furthermore it introduces a very interesting suggestion in noting that the validity of relations (2) implies the existence of a quadratic form

$$
B(x) \equiv \sum_{k, l=1}^{n} b_{k l} x_{k} x_{l}
$$

which is definite or semi-definite, and such that

$$
\sum_{k, l=1}^{n} a_{k l}^{i} \cdot b_{k l}=0, \quad i=1,2, \cdots, m
$$

Presented to the Society, February 27, 1943; received by the editors August 31, 1942.
${ }^{1}$ Finsler, Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen, Comment. Math. Helv. vol. 9 (1937) pp. 188-192. Hestenes and McShane, A theorem on quadratic forms and its application in the calculus of variations, Trans. Amer. Math. Soc. vol. 47 (1940) pp. 501-512. Dines, On the mapping of n quadratic forms, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 467-471.
${ }^{2} A$ note on the maximum principle for elliptic differential equations, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 268-271.

