ON SEQUENCES OF POLYNOMIALS AND THE DISTRIBUTION OF THEIR ZEROS

OTTO SZÂSZ

The first results on this subject are due to Laguerre (1882); they were generalized to a remarkable degree by Pólya and in a joint paper by Lindwart and Pólya. I quote the following theorems [2]. ${ }^{1}$

Theorem 1. If a sequence of polynomials

$$
\begin{equation*}
P_{n}(z)=1+\sum_{1}^{n} c_{n \nu} z^{\nu}=\prod_{\nu}\left(1-z z_{n \nu}^{-1}\right) \tag{1}
\end{equation*}
$$

converges uniformly in a circle $|z|<R$, and if for some integer k

$$
\begin{equation*}
\sum_{1}^{n}\left|z_{n v}\right|^{-k}<M, \quad M \text { independent of } n, \tag{2}
\end{equation*}
$$

then the sequence (1) converges uniformly in every finite domain to an entire function $F(z)$ which is the product of a function of genus at most $k-1$ and of $e^{\gamma z^{k}}, \gamma$ a constant.

Theorem 2. If the sequence (1) converges uniformly in a circle $|z|<R$, and if the roots $z_{n \nu}$ lie in the half-plane $\mathcal{R} z \geqq 0$ for each n, then the sequence (1) converges uniformly in every finite domain to an entire function $F(z)$ which is at most of genus 2, and the roots z_{ν} of $F(z)$ satisfy $\sum\left|z_{\nu}\right|^{-2}<\infty$.

While in Theorem 1 the assumption of uniform convergence could be replaced by convergence at infinitely many points with a finite limit point and by boundedness of the sequences: $\left|c_{n 1}\right|, \cdots,\left|c_{n k-1}\right|$, $n=1,2, \cdots$, the deduction of Theorem 2 required uniform convergence in $|z|<R$. We give here a new proof for Theorem 2 with a weaker hypothesis assuming instead of uniform convergence only convergence at infinitely many points in some finite domain and boundedness of the sequences $\left|c_{n 1}\right|,\left|c_{n 2}\right|$. We further generalize the assumption on the location of the zeros (following a similar remark of Weisner [5]), assuming only that the zeros of $P_{n}(z)$ lie in a halfplane containing the origin on its boundary, but otherwise varying with n. Finally we extend the results to certain sequences of entire functions.

[^0]
[^0]: Presented to the Society, April 3, 1942; received by the editors July 14, 1942.
 ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of this paper.

