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Introduction. We propose to investigate here the consequences of
the identity of each pair chosen from three important generalizations
of the relation of betweenness on a line, namely, algebraic between-
ness [1, p. 27],! metric betweenness [3, p. 36], and lattice between-
ness [7, Part I1I]. We shall also find an interpretation of metric
betweenness in the Banach space of all continuous functions defined
on the interval 0=<#¢=<1 which can be used to establish the fact that
this relation satisfies no strong four or five point transitivity [7,
Part ] except ¢ and f,.

We note first that algebraic betweenness implies metric between-
ness and lattice betweenness. We find that algebraic betweenness and
metric betweenness coincide in a seminormed real vector space? if and
only if it is strictly convex in the sense of Clarkson [4, p. 404]. We
then show that the coincidence of metric and lattice betweenness in
a semimetric space [3, p. 38] which is also a lattice [2, p. 16] leads
to a system which is a metric lattice (in the sense of G. Birkhoff
[2, p. 41]). It follows that a complete seminormed real vector lattice
is equivalent to an (Z)-space [6] if and only if its metric and lattice
betweenness relations are identical. Finally, we prove that algebraic
and lattice betweenness coincide in a real vector lattice if and only
if it is equivalent to the system of all real numbers. We conclude by
giving the interpretation of metric betweenness in the space? CJ0, t].
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1 References to the bibliography at the end of the paper will be in brackets.

2 We shall use these terms as follows. A seminormed real vector space is a vector
space over the field of all real numbers together with a real non-negative single-valued
function ”a”, called the “norm of a,” satisfying (i) ”MH = |)\| Ha”, and (ii) Ha l =0 if
and only if ¢ =0. A normed real vector space satisfies in addition (iii) ||a]| +||3]| Z||a +2]|.
A real vector lattice is a vector space over the field of all real numbers which is also a
lattice [2, p. 16] with respect to a partial ordering relation “2” such that (i) azb
and N0 implies \a Z\b, and (ii) @ =b implies a +c=b-+c for every c. A (semi)normed
real vector lattice is a real vector lattice which is also a (semi)normed real vector space;
it is complete if evey fundamental sequence has a limit. A complete normed real vector
space is usually called a (real) Banach space.

3 The notation C[0, 1] (sometimes simply C) is currently used to designate the
space described in the concluding sentence of the preceding paragraph.
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