A COMPARISON OF ALGEBRAIC, METRIC, AND LATTICE BETWEENNESS

M. F. SMILEY

Introduction. We propose to investigate here the consequences of the identity of each pair chosen from three important generalizations of the relation of betweenness on a line, namely, algebraic betweenness [1, p. 27],¹ metric betweenness [3, p. 36], and lattice betweenness [7, Part II]. We shall also find an interpretation of metric betweenness in the Banach space of all continuous functions defined on the interval $0 \le t \le 1$ which can be used to establish the fact that this relation satisfies no strong four or five point transitivity [7, Part I] except t_1 and t_2 .

We note first that algebraic betweenness implies metric betweenness and lattice betweenness. We find that algebraic betweenness and metric betweenness coincide in a seminormed real vector space² if and only if it is strictly convex in the sense of Clarkson [4, p. 404]. We then show that the coincidence of metric and lattice betweenness in a semimetric space [3, p. 38] which is also a lattice [2, p. 16] leads to a system which is a metric lattice (in the sense of G. Birkhoff [2, p. 41]). It follows that a complete seminormed real vector lattice betweenness relations are identical. Finally, we prove that algebraic and lattice betweenness coincide in a real vector lattice if and only if it is equivalent to the system of all real numbers. We conclude by giving the interpretation of metric betweenness in the space³ C[0, 1].

³ The notation C[0, 1] (sometimes simply C) is currently used to designate the space described in the concluding sentence of the preceding paragraph.

Presented to the Society, September 10, 1942; received by the editors March 27, 1942.

¹ References to the bibliography at the end of the paper will be in brackets. ² We shall use these terms as follows. A seminormed real vector space is a vector space over the field of all real numbers together with a real non-negative single-valued function ||a||, called the "norm of a," satisfying (i) $||\lambda a|| = |\lambda| ||a||$, and (ii) ||a|| = 0 if and only if a = 0. A normed real vector space satisfies in addition (iii) $||a|| + ||b|| \ge ||a+b||$. A real vector lattice is a vector space over the field of all real numbers which is also a lattice [2, p. 16] with respect to a partial ordering relation " \ge " such that (i) $a \ge b$ and $\lambda \ge 0$ implies $\lambda a \ge \lambda b$, and (ii) $a \ge b$ implies $a+c \ge b+c$ for every c. A (semi)normed real vector lattice is a real vector lattice which is also a (semi)normed real vector space; it is complete if every fundamental sequence has a limit. A complete normed real vector space is usually called a (real) Banach space.