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ALGEBRA AND THEORY OF NUMBERS 

103. A. A. Albert: Algebras derived by non-associative matrix multi
plication. 

Let (£ be any 7-involutorial algebra and define its isotopes (Sp, (£*, &Kp by x, 
y=zx{yJ)1 (x, y) = (xJ)y, [x, y] — (xJ)(yJ), respectively. When (£ has a unity quantity 
the algebras (Sp, (£K, d£Kp are all semi-simple if and only if (S is semi-simple, they are 
simple if and only if (S is either simple or a direct sum <& 0 © / where © is simple. If 91 
is the radical of (S then Sft = WJ forms the radical of the isotopes. The structure of row-
algebras, that is, subalgebras pf (£p is determined. In particular it is shown that there 
exist real linear spaces of matrices forming algebras under row by row but not under 
row by column multiplication. They are never semi-simple. (Received January 26, 
1943.) 

104. Joseph Bowden: The quaternary permutation function and a 
generalization of Newton's binomial theorem and Vander monde' s permu
tation theorem. 

If a and d are any finite numbers, m any integer, r a primary number and p 
an integer whose elements are the primary numbers Y\ and 7% define (a, d)P(mf r) 
-TiZr

m+l^-{k-\)d) and (a, d)P{m, P ) - ( a , d)P(m-r2, n ) : (a f d)P(rn-r2, r2). 
From these definitions it follows that (a, d)P(m, 0) = 1 and (a, d)P(m, p) 
— : l(a> d)P(m-\-p, —p)]. The operation P is quaternary because it acts on four oper
ands. From the quaternary permutation function {a, d)P(m, p) by putting d = 0 
it is found tha t (a, d)P(m, p) — a9. By putting d = \ or a — pd or m — 0 three ternary 
functions are obtained. By making two of these three substitutions three binary func
tions are obtained. In particular if d — 1 and m — 0, (a, d)P(m, p)—aPp, the binary 
permutation function. By making all three of these substitutions (p, \)P • (0, p)=p\ 
is obtained, the unary factorial function. As examples, it is found that 0! = 1 and 
p ! = 00 if p is negative. By mathematical induction the following theorem is proved, 
of which Newton's binomial theorem and Vandermonde's permutation theorem are 
special cases: If r is a primary number or zero, a, b, d any finite numbers, except 
that , if r and d are both zero, neither a nor b nor a-\-b is zero, and m and n are 
any integers, then (a+b, d)P(m+n, O ^ E ^ r C O f e - l ) • (a, d)P(rn, r-(k-\)) 
•(&, d)P(n, k-1). By putting d = 0, H & l ^ S l / ^ - l J - a ^ - 1 ) - ^ , which is 
Newton's theorem. By putting d = l and m = 0 (a+b)Pr^^\rC(k--l) 
'aP(r — (k — 1)) -bP(k — 1), which is Vandermonde's theorem. (Received February 1, 
1943.) 
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