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At the suggestion of T. H. Hildebrandt the authors undertook to 
determine the nature of the space of modular functions of E. H. 
Moore when the range ^ is taken to be the infinite interval — oo 
< x < + °° and the base matrix e to be of the form 

(1) €(a, y) = f e«-**dV(t), 
J - o o 

where F is a monotonically increasing bounded function. This form 
of e is suggested by the work of Bochner on positive functions.1 

In this note we determine the form of functions modular as to e and 
of the /-integral. 

To avoid, a t first, convergence questions we turn our attention to 
functions </> finite as to e, that is, functions of the form 

(2) *(*) = Ê e(*, yi)0i = f V«X(/)<*7(/), 

where 
n 

(3) \(t) = J2 aj-e-^K 

In the formulas (2) and (3) the a,- are arbitrary constants and the y3-
are points on the interval (— oo, + oo). I t is known from standard 
results in the theory of modular and finite functions2 tha t every 
function <j> finite as to e is modular and tha t 

n 

N(f> = J<t*t> = 2-t âje(xjj Xk)dki 

(4) _ 
J<t>i4>2 = [N&i + <j>2) - N(<t>i - fo) - iNfa + fa) 

+ iNfai - *>2)]/4. 

Calculating the values of N<f> and J<j>i<j>2, we see that 

ƒ
+ 0 0 /% + 0 0 

\x\2dV, N<j>= I | \ | W . 
- o o J —oo Received by the editors March 7, 1942. 
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