$5p_1 + 2p_3 + 7p_4 = m + 1$, $5q_1 + 2q_3 + 7q_4 = n$.

A solution of these equations is $p_1 = 4$, $p_2 = 3$, $p_3 = 11$, $p_4 = 7$, $p_5 = 1$, $q_1 = 4$, $q_2 = 3$, $q_3 = 11$, $q_4 = 7$, $q_5 = 3$. Hence a solution of (12) is $x = \alpha s^{4}t^4$, $y = \beta s^3 t^3$, $u = \lambda s^{11}t^{11}$, $v = \mu s^7 t^7$, $w = \nu s t^3$ where $s = a\alpha^3\lambda^7\nu + b\beta^4\mu^{11}\nu$, $t = c\alpha^5\lambda^2\mu^7$.

If x = x', y = y', u = u', v = v', w = w' is a given solution of (12) and the choice $\alpha = x'$, $\beta = y'$, $\lambda = u'$, $\mu = v'$, $\nu = w'$ is made then s = t and the solution becomes $x = x't^8$, $y = y't^6$, $u = u't^{22}$, $v = v't^{14}$, $w = w't^4$ which is equivalent to the given solution provided $t \neq 0$.

UNITED STATES NAVAL ACADEMY AND UNIVERSITY OF HOUSTON

VECTOR ANALOGUES OF MORERA'S THEOREM

E. F. BECKENBACH

Let the vector

$$\boldsymbol{X} \equiv \boldsymbol{X}(x_1, x_2, x_3) \equiv \boldsymbol{X}(x) \equiv X_1 \boldsymbol{i} + X_2 \boldsymbol{j} + X_3 \boldsymbol{k}$$

be defined and continuous in the domain (non-null connected open set) D. Consider the mean-value vector

(1)
$$\boldsymbol{X}^{(\rho)}(x) \equiv \frac{1}{|V_{\rho}|} \int_{V_{\rho}} \boldsymbol{X}(x+\xi) dV,$$

where V_{ρ} denotes the sphere

$$\xi_1^2 + \xi_2^2 + \xi_3^2 < \rho^2,$$

and $|V_{\rho}|$ its volume,

$$\left| V_{\rho} \right| \equiv 4\pi \rho^3/3.$$

The vector (1) can be defined thus for only a part D_{ρ} of D, but this is of no consequence since ρ is arbitrarily small.

Since X(x) is continuous, it follows that $X^{(\rho)}(x)$ has continuous partial derivatives of the first order; these are given by

(2)
$$\frac{\partial}{\partial x_p} X^{(\rho)}(x) = \frac{1}{|V_{\rho}|} \int_{S_{\rho}} X(x + \rho \alpha) \alpha_p d\sigma,$$

where S_{ρ} denotes the surface of V_{ρ} and α_1 , α_2 , α_3 are the components of the unit vector along the outer normal to S_{ρ} .

Presented to the Society, September 5, 1941 under the title Vector formulations of Morera's theorem; received by the editors March 3, 1942.