$$
5 p_{1}+2 p_{3}+7 p_{4}=m+1, \quad 5 q_{1}+2 q_{3}+7 q_{4}=n
$$

A solution of these equations is $p_{1}=4, p_{2}=3, p_{3}=11, p_{4}=7, p_{5}=1$, $q_{1}=4, q_{2}=3, q_{3}=11, q_{4}=7, q_{5}=3$. Hence a solution of (12) is $x=\alpha s^{4} t^{4}$, $y=\beta s^{3} t^{3}, \quad u=\lambda s^{11} t^{11}, \quad v=\mu s^{7} t^{7}, \quad w=\nu s t^{3} \quad$ where $s=a \alpha^{3} \lambda^{7} \nu+b \beta^{4} \mu^{11} \nu$, $t=c \alpha^{5} \lambda^{2} \mu^{7}$.

If $x=x^{\prime}, y=y^{\prime}, u=u^{\prime}, v=v^{\prime}, w=w^{\prime}$ is a given solution of (12) and the choice $\alpha=x^{\prime}, \beta=y^{\prime}, \lambda=u^{\prime}, \mu=v^{\prime}, \nu=w^{\prime}$ is made then $s=t$ and the solution becomes $x=x^{\prime} t^{8}, y=y^{\prime} t^{6}, u=u^{\prime} t^{22}, v=v^{\prime} t^{14}, w=w^{\prime} t^{4}$ which is equivalent to the given solution provided $t \neq 0$.

United States Naval Academy and
University of Houston

## VECTOR ANALOGUES OF MORERA'S THEOREM

## E. F. BECKENBACH

Let the vector

$$
X \equiv X\left(x_{1}, x_{2}, x_{3}\right) \equiv X(x) \equiv X_{1} i+X_{2} j+X_{3} k
$$

be defined and continuous in the domain (non-null connected open set) $D$. Consider the mean-value vector

$$
\begin{equation*}
X^{(\rho)}(x) \equiv \frac{1}{\left|V_{\rho}\right|} \int_{V_{\rho}} X(x+\xi) d V \tag{1}
\end{equation*}
$$

where $V_{\rho}$ denotes the sphere
and $\left|V_{\rho}\right|$ its volume,

$$
\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}<\rho^{2}
$$

$$
\left|V_{\rho}\right| \equiv 4 \pi \rho^{3} / 3
$$

The vector (1) can be defined thus for only a part $D_{\rho}$ of $D$, but this is of no consequence since $\rho$ is arbitrarily small.

Since $X(x)$ is continuous, it follows that $X^{(\rho)}(x)$ has continuous partial derivatives of the first order; these are given by

$$
\begin{equation*}
\frac{\partial}{\partial x_{p}} \boldsymbol{X}^{(\rho)}(x)=\frac{1}{\left|V_{\rho}\right|} \int_{S_{\rho}} X(x+\rho \alpha) \alpha_{p} d \sigma \tag{2}
\end{equation*}
$$

where $S_{\rho}$ denotes the surface of $V_{\rho}$ and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the components of the unit vector along the outer normal to $S_{\rho}$.

Presented to the Society, September 5, 1941 under the title Vector formulations of Morera's theorem; received by the editors March 3, 1942.

