$$
z=1+\frac{a_{2 n-1}}{\bar{z}}, \quad \bar{z}=1+\frac{a_{2 n}}{z}, \quad n \geqq 1
$$

This gives

$$
\begin{aligned}
a_{2 n-1} & =(z-1) \bar{z} \\
a_{2 n} & =(\bar{z}-1) z=\bar{a}_{2 n-1}
\end{aligned}
$$

and it is easily seen that all a_{n} lie on the boundary of the parabola. The theorem is now completely proved.

Bibliography

1. J. F. Paydon, Convergence regions and value regions for continued fractions, this Bulletin, abstract 47-11-473.
2. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Transactions of this Society, vol. 47 (1940), pp. 155-172.
3. - Value regions for continued fractions, this Bulletin, vol. 47 (1941), pp. 580-585.

The Rice Institute

A TABLE OF COEFFICIENTS FOR NUMERICAL DIFFERENTIATION

ARNOLD N. LOWAN, HERBERT E. SALZER AND ABRAHAM HILLMAN ${ }^{1}$
The following table lists the coefficients $A_{m, s}$ for $m=1,2, \cdots, 20$ and $s=m, \cdots, 20$ in Markoff's formula for the m th derivative in terms of advancing differences, namely

$$
\omega^{m} f^{(m)}(x)=\sum_{s=m}^{n-1}(-1)^{m+s} A_{m, s} \Delta^{s} f(x)+(-1)^{m+n} \omega^{n} A_{m, n} f^{(n)}(\xi)
$$

In this formula ω is the tabular interval and

$$
A_{m, s}=(-1)^{m+s} m B_{s-m}^{(s)} / s(s-m)!
$$

and $B_{s-m}^{(s)}$ is the $(s-m)$ th Bernoulli number of the s th order.

Presented to the Society, April 4, 1942 under the title Coefficients of differences in the expansion of derivatives in terms of advancing differences; received by the editors March 7, 1942.
${ }^{1}$ The results reported here were obtained in the course of the work done by the Mathematical Tables Project, Work Projects Administration, New York City.

