$$z = 1 + \frac{a_{2n-1}}{\bar{z}}, \qquad \bar{z} = 1 + \frac{a_{2n}}{z}, \qquad n \ge 1.$$

This gives

$$a_{2n-1} = (z - 1)\overline{z},$$

$$a_{2n} = (\overline{z} - 1)z = \overline{a}_{2n-1},$$

and it is easily seen that all a_n lie on the boundary of the parabola. The theorem is now completely proved.

BIBLIOGRAPHY

1. J. F. Paydon, Convergence regions and value regions for continued fractions, this Bulletin, abstract 47-11-473.

2. W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Transactions of this Society, vol. 47 (1940), pp. 155-172.

3. ——, Value regions for continued fractions, this Bulletin, vol. 47 (1941), pp. 580–585.

The Rice Institute

A TABLE OF COEFFICIENTS FOR NUMERICAL DIFFERENTIATION

ARNOLD N. LOWAN, HERBERT E. SALZER AND ABRAHAM HILLMAN¹

The following table lists the coefficients $A_{m,s}$ for $m=1, 2, \cdots, 20$ and $s=m, \cdots, 20$ in Markoff's formula for the *m*th derivative in terms of advancing differences, namely

$$\omega^{m} f^{(m)}(x) = \sum_{s=m}^{n-1} (-1)^{m+s} A_{m,s} \Delta^{s} f(x) + (-1)^{m+n} \omega^{n} A_{m,n} f^{(n)}(\xi).$$

In this formula ω is the tabular interval and

$$A_{m,s} = (-1)^{m+s} m B_{s-m}^{(s)} / s(s-m)!$$

and $B_{s-m}^{(s)}$ is the (s-m)th Bernoulli number of the sth order.

920

Presented to the Society, April 4, 1942 under the title *Coefficients of differences in the expansion of derivatives in terms of advancing differences*; received by the editors March 7, 1942.

¹ The results reported here were obtained in the course of the work done by the Mathematical Tables Project, Work Projects Administration, New York City.