DUAL GEODESICS ON A SURFACE

C. E. SFRINGER

Introduction. Union curves and dual union curves have been defined and studied in projective space by Sperry. ${ }^{1}$ It is well known that the union curves of the congruence of normals to a metric surface are the geodesics on the surface. The principal aim of this note is to obtain the differential equation of the dual geodesics on a metric analytic surface in ordinary space.

The notation of Eisenhart ${ }^{2}$ will be employed for the most part. However, $\Gamma_{\beta \gamma}^{\alpha}$ will be used here as the Christoffel symbol of the second kind. Greek indices will take the range 1,2 , and Latin indices the range $1,2,3$.

1. Ray-point corresponding to a point of a curve on the surface. The tangent planes to the surface $S\left(x^{i}=x^{i}\left(u^{1}, u^{2}\right)\right.$) at the point $P\left(x^{i}\right)$ and at two "successive" points of the curve $C\left(u^{\alpha}=u^{\alpha}(s)\right)$ on S are given by

$$
\begin{align*}
\left(\xi^{i}-x^{i}\right) X^{i} & =0 \\
\left(\xi^{i}-x^{i}\right) \frac{\partial X^{i}}{\partial u^{\alpha}} u^{\prime \alpha} & =0 \tag{1}\\
\left(\xi^{i}-x^{i}\right)\left(\frac{\partial^{2} X^{i}}{\partial u^{\alpha} \partial u^{\beta}} u^{\prime \alpha} u^{\prime \beta}+\frac{\partial X^{i}}{\partial u^{\alpha}} u^{\prime \prime \alpha}\right) & =\frac{\partial X^{i}}{\partial u^{\alpha}} \frac{\partial x^{i}}{\partial u^{\beta}} u^{\prime \alpha} u^{\prime \beta},
\end{align*}
$$

where the primes indicate differentiation with respect to s.
The ray-point ${ }^{3} R$ of the curve C corresponding to the point P is the point of intersection of the three planes (1). The coordinates of R are given by

$$
\begin{equation*}
S\left(\xi^{i}-x^{i}\right)=\delta_{\sigma \nu}^{j k} X^{\sigma} \frac{\partial X^{l}}{\partial u^{\alpha}} \frac{\partial x^{l}}{\partial u^{\beta}} \frac{\partial X^{\nu}}{\partial u^{\gamma}} u^{\prime \alpha} u^{\prime \beta} u^{\prime \gamma} \tag{2}
\end{equation*}
$$

where i, j, k take the values $1,2,3$ cyclically, $\delta_{\sigma v}^{j k}$ is a Kronecker delta, and S is defined by

[^0]
[^0]: Presented to the Society, November 28, 1942; received by the editors of the American Journal of Mathematics February 19, 1942; later transferred to this Bulletin.
 ${ }^{1}$ Sperry, Properties of a certain projectively defined two-parameter family of curves on a general surface, American Journal of Mathematics, vol. 40 (1928), p. 213.
 ${ }^{2}$ Eisenhart, Differential Geometry, Princeton University Press, 1940.
 ${ }^{3}$ Lane, Projective Differential Geometry of Curves and Surfaces, The University of Chicago Press, 1932.

