is a regular Hausdorff mean. By (4.1) we see that $[H, q_n] \supset (C, 1)$. It is easy to show that $(C, 1) \supset [H, q_n]$, thereby proving that $[H, q_n] \approx (C, 1)$. If $c_n = p_n = 1/(n+1)$, then

$$q_n = \frac{1 + 2^{-1} + 3^{-1} + \dots + n^{-1}}{n+1}$$

and $[H, q_n]$ is a regular Hausdorff mean. This mean does not include (C, 1) inasmuch as $q_n: (n+1)^{-1}$ is unbounded.

NORTHWESTERN UNIVERSITY

WHIRL-SIMILITUDES, EUCLIDEAN KINEMATICS, AND NON-EUCLIDEAN GEOMETRY

J. M. FELD

1. Introduction. The geometry of whirls and whirl-motions in the plane had its origin in a paper by E. Kasner [6],¹ was subsequently developed in a series of papers by Kasner and DeCicco [3, 7, 8, 9], adapted to the sphere by Strubecker [10], and to 3-space by Feld [4]. In this paper we shall, by adjoining three involutory transformations, extend Kasner's whirl-motion group G_6 to a mixed group Γ_6 —the complete whirl-motion group—composed of eight mutually exclusive, six-parameter families; these families will in turn be extended to seven-parameter families comprising the mixed group Γ_7 —the complete whirl-similitude group. The principal results obtained are the extension of Kasner's G_6 and two representations of Γ_7 : a kinematic representation on the plane, §6, and a representation in quasi-elliptic 3-space, §7.

2. Slides, turns, and whirls. Let the point of an oriented lineal element *E* have the rectangular coordinates *x*, *y*, and let the inclination of *E* to the *x*-axis be the angle θ , $0 \le \theta < 2\pi$. Let z = x + iy, $\bar{z} = x - iy$, $\zeta = e^{i\theta}$. We shall call *z*, ζ the *element coordinates* of *E* (*x*, *y*, θ), which, henceforth, shall be represented by the symbol (z, ζ) .

DEFINITIONS. A slide S_s is a lineal element transformation that translates the point of each element along its line the same distance s.

1942]

Presented to the Society, April 13, 1940; received by the editors January 9, 1942. ¹ The numbers in brackets refer to the bibliography at the end of the paper.