HAUSDORFF MEANS INCLUDED BETWEEN ($C, 0$) AND ($C, 1$)

HERBERT J. GREENBERG AND H. S. WALL
In this paper we show that if $\phi(u)$ is any function of bounded variation on the interval $0 \leqq u \leqq \infty$ and $\phi(\infty)-\phi(0)=1$, then the function $\alpha(z)=\int_{0}^{\infty} d \phi(u) /(1+z u)$ is a regular moment function; and we show that when $\phi(u)$ is further restricted to be monotone then the Hausdorff mean determined by $\alpha(z)$ is included between ($C, 0$) and ($C, 1$). Conditions under which this mean is equivalent to $(C, 0)$ or to $(C, 1)$ are obtained which are analogous to the conditions found by Scott and Wall ${ }^{1}$ for the special case where $\phi(u) \equiv 1$ for $u \geqq 1, \phi(0)=0$. In §1 we give an elementary development of the notion of Hausdorff summability; $\S 2$ contains a proof that $\alpha(z)$ is a regular moment function; $\S 3$ contains the above mentioned inclusion theorems; and §4 contains examples and a discussion of some transformations of moment functions which are suggested by the earlier developments.

1. Hausdorff summability. Let $A=\left(a_{i j}\right)$ be any matrix in which $a_{i i} \neq 0$ and $a_{i j}=0$ for $j>i, i, j=0,1,2, \cdots$, and consider the system of equations

$$
\begin{array}{ll}
a_{00} q_{0} & =c_{0}\left(a_{00} p_{0}\right) \\
a_{10} q_{0}+a_{11} q_{1} & =c_{1}\left(a_{10} p_{0}+a_{11} p_{1}\right) \tag{1.1}\\
a_{20} q_{0}+a_{21} q_{1}+a_{22} q_{2} & =c_{2}\left(a_{20} p_{0}+a_{21} p_{1}+a_{22} p_{2}\right)
\end{array}
$$

These equations constitute a linear transformation of the sequence $\left\{p_{n}\right\}$ into the sequence $\left\{q_{n}\right\}$, the transformation depending upon the matrix A and the sequence $\left\{c_{n}\right\}$. If $\lim q_{n}=p$, we shall say that the sequence $\left\{p_{n}\right\}$ is $\left[A, c_{n}\right]$-summable to the limit p. A sequence $\left\{c_{n}\right\}$ such that $\left[A, c_{n}\right]$ sums every convergent sequence to its proper limit will be called A-regular. The following statements are almost obvious consequences of the above definitions:
(i) If $\left[A, c_{n}\right]$ transforms $\left\{p_{n}\right\}$ into $\left\{q_{n}\right\}$, and $\left[A, d_{n}\right]$ transforms $\left\{q_{n}\right\}$ into $\left\{r_{n}\right\}$, then $\left[A, c_{n} d_{n}\right]$ transforms $\left\{p_{n}\right\}$ into $\left\{r_{n}\right\}$.
(ii) If $\left\{c_{n}\right\},\left\{d_{n}\right\}$ are A-regular, then $\left[c_{n} d_{n}\right]$ is A-regular.
(iii) If $\left[A, c_{n}\right]$ sums $\left\{p_{n}\right\}$ to the limit p, then $\left[A, k c_{n}\right] \operatorname{sums}\left\{p_{n}\right\}$ to the limit $k p$.

[^0]
[^0]: Presented to the Society, February 28, 1942; received by the editors January 15, 1942.
 ${ }^{1}$ W. T. Scott and H. S. Wall, Transformation of series and sequences, Transactions of this Society, vol. 51 (1942), pp. 255-279.

