ON AN ELEMENTARY ANALOGUE OF THE RIEMANN-MANGOLDT FORMULA

AUREL WINTNER
Ramanujan's unsuccessful approach to the Prime Number Theorem, published only recently, is based on the power series

$$
\sum_{n=1}^{\infty} \Lambda(n) x^{n} \equiv \sum_{p} \log p \sum_{k=1}^{\infty} x^{p^{k}} \quad \text { and } \quad \sum_{n=1}^{\infty} p^{n} x^{p^{n}}, \quad 0<x<1
$$

where p denotes a prime and p is 2 in the last series. In his discussion of Ramanujan's failure in case of the latter series, a series impracticable as $x \rightarrow 1$, Hardy gives for the function represented by the series another expansion, one exhibiting the critical "wobbles," as follows: ${ }^{1}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} p^{n} \exp \left(-p^{n} s\right)=\{ \} / \log p, \quad p=2 \tag{1}
\end{equation*}
$$

where $\}$ is the expression

$$
\begin{gather*}
\left\}=\frac{1}{s}-\frac{1}{s} \cdot \sum_{k=-\infty}^{\infty} \Gamma\left(\frac{1+2 \pi k i}{\log p}\right) s^{-2 \pi k i / \log p}\right. \tag{2}\\
-\log p \sum_{n=0}^{\infty} \frac{(-1)^{n} p^{n+1}}{p^{n+1}-1} \frac{s^{n}}{n!}
\end{gather*}
$$

it being understood that $\sum_{k=-\infty}^{\infty \prime}=\sum_{k=-\infty}^{-1}+\sum_{k=1}^{\infty}$ and $-\log x=s>0$.
It will be seen later on that Hardy's result (2) contains two errors. However, the purpose of this note is not calculation of the corrections necessary, which are of a trivial nature, but the presentation of a short approach which seems to be of methodical and historical interest.

First, (2) is of the same type as the "explicit formula" of RiemannMangoldt ${ }^{2}$ (the two sums representing the contributions of the "nontrivial" and "trivial" zeros, respectively). Correspondingly, Hardy's

Received by the editors January 12, 1942.
${ }^{1}$ G. H. Hardy, Ramanujan, Cambridge, 1940, chap. II, formulae (2.9.1) and (2.11.2).
${ }^{2}$ Cf., for example, A. E. Ingham, The Distribution of Primes, Cambridge Tracts, no. 30 (1932), chap. IV.

Relevant for the comparison is only the "Abelian" form (instead of the deeper "Cesàro" form) of the Riemann-Mangoldt formula; cf. G. H. Hardy and J. E. Iittlewood, Acta Mathematica, vol. 41 (1918), pp. 119-196.

