position fields coincide and are cyclic. The field \overline{L} is then equivalent to a subfield of \overline{K}' ; without loss of generality we may suppose $\overline{K}' > \overline{L} \ge \overline{K}$. The degree $[\overline{L}:\overline{K}] = \overline{m}$ is a divisor of m. Consequently $[Z_n\overline{L}:\overline{K}] = [Z_n\overline{L}:\overline{L}][\overline{L}:\overline{K}] = n\overline{m}$. By the Galois theory there is then for every integer n an extension Z_n^* of degree n over \overline{K} . The defining equation $f^*(x) = 0$ of Z_n^*/\overline{K} now may be approximated by an irreducible equation f(x) = 0 of degree n with coefficients in K so that Z_n^* is generated by the roots of f(x) = 0. The root field of f(x) = 0 over Kis the cyclic extension Z_n' of degree n over K. Hence $Z_n^* = Z_n' \overline{K}$ for all n, contrary to the assumption that K is not relatively complete with respect to any rank one valuation.

HARVARD UNIVERSITY AND UNIVERSITY OF CHICAGO

A DIFFERENTIAL GEOMETRY PROBLEM USING TENSOR ANALYSIS

ATHERTON H. SPRAGUE

1. Introduction. The problem at hand was worked out in attempting to apply tensors to a much more general problem in classical differential geometry. The results obtained in a general coordinate system reduce readily to classical results of Eisenhart. An interesting interpretation of Christoffel symbols appears.

2. *R* net. A rectilinear congruence in 3-space is called a *W*-congruence if the asymptotic lines on the two focal surfaces correspond. If the tangents to both families of curves of a conjugate net on a surface form *W*-congruences the net is called an *R* net.¹ We derive the analytic conditions that must obtain in order that a given conjugate net on a surface shall be an *R* net.

3. Equations for an R net. Let S_1 be one focal surface of a W-congruence, the vector equation of the surface being

(3.1)
$$z_1^{\alpha} = z_1^{\alpha}(x^i), \qquad \alpha = 1, 2, 3; i = 1, 2.$$

1942]

Received by the editors November 11, 1941.

¹ Tzitzeica, Comptes Rendus de l'Académie des Sciences, Paris, vol. 152 (1911), p. 1077.