TABLE OF THE ZEROS OF THE LEGENDRE POLYNOMIALS OF ORDER 1-16 AND THE WEIGHT COEFFICIENTS FOR GAUSS' MECHANICAL QUADRATURE FORMULA ${ }^{1}$

ARNOLD N. LOWAN, NORMAN DAVIDS AND ARTHUR LEVENSON

Gauss' method of mechanical quadrature has the advantage over most methods of numerical integration in that it requires about half the number of ordinate computations. This is desirable when such computations are very laborious, or when the observations necessary to determine the average value of a continuously varying physical quantity are very costly. Gauss' classical result ${ }^{2}$ states that, for the range $(-1,+1)$, the "best" accuracy with n ordinates is obtained by choosing the corresponding abscissae at the zeros x_{1}, \cdots, x_{n} of the Legendre polynomials $P_{n}(x)$. With each x_{i} is associated a constant a_{i} such that

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \sim a_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+\cdots+a_{n} f\left(x_{n}\right) \tag{1}
\end{equation*}
$$

The accompanying table computed by the Mathematical Tables Project gives the roots x_{i} for each $P_{n}(x)$ up to $n=16$, and the corresponding weight coefficients a_{i}, to 15 decimal places.

The first such table, computed by Gauss gave 16 places up to $n=7 .{ }^{3}$ More recently work was done by Nyström, ${ }^{4}$ who gave 7 decimals up to $n=10$, but for the interval $(-1 / 2,+1 / 2)$. B. de F . Bayly has given the roots and coefficients of $P_{12}(x)$ to 13 places. ${ }^{5}$

The Gaussian quadrature formula for evaluating an integral with arbitrary limits (p, q) is given by

[^0]
[^0]: Presented to the Society, October 25, 1941, under the title Tables for Gauss' mechanical quadrature formula; received by the editors December 18, 1941.
 ${ }^{1}$ The results reported here were obtained in the course of the work done by the Mathematical Tables Project conducted by the Work Projects Administration for New York City under the sponsorship of the National Bureau of Standards, Dr. Lyman J. Briggs, Director.
 ${ }^{2}$ Methodus nova integralium valores per approximationen inveniendi, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, vol. 3 (1814), or Werke, vol. 3, pp. 193-195.
 ${ }^{3}$ It may be found reproduced in Heine's Kugelfunctionen, vol. 2, 1881, p. 15, or Hobson, Spherical Harmonics, pp. 80-81.
 ${ }^{4}$ Nyström, Acta Mathematica, vol. 54 (1930), p. 191.
 ${ }^{5}$ B. de F. Bayly, Biometrika, vol. 30 (1938), pp. 193-194.

