## A NOTE ON THE DIOPHANTINE PROBLEM OF FINDING FOUR BIQUADRATES WHOSE SUM IS A BIQUADRATE

## J. O. PATTERSON

The problem is to assign integers satisfying the relation

$$
\begin{equation*}
x^{4}=y^{4}+a^{4}+b^{4}+c^{4} \tag{1}
\end{equation*}
$$

Granted that the five integers have no common divisor, it follows that $x$ and one quantity on the right (here taken as $y$ ) are not multiples of 5 ; and it can be shown that (1) without loss of generality can be replaced by

$$
\begin{equation*}
x^{4}=y^{4}+5^{4} l^{4}\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right) \tag{2}
\end{equation*}
$$

In this expression $x$ is an odd number prime to $y ; y$ may be odd or even; and neither is divisible by 5 , as stated above.

Let $\left(x^{4}-y^{4}\right) / 5^{4} t^{4}=d$; which for values satisfying (2) will be an integer.

Evidently $x$ and $y$ must satisfy the congruence $x^{4} \equiv y^{4}\left(\bmod 5^{4}\right)$. Hence, for values of $x$ up to any required magnitude, there are corresponding values of $y ;{ }^{1}$ and the resultant values of $d$ can be found and tabulated.

If (2) is satisfied, then $d=\alpha^{4}+\beta^{4}+\gamma^{4}$; and from the elementary properties of the sum of three biquadrates it is seen that many values of $d$ may be rejected at once: for example, all those having for the final digit $0,4,5$, or 9 ; and all those incapable of representing the sum of three square numbers. The remaining values of $d$ will have for the final digit $1,2,3,6,7$, or 8 . Regarding these as separate cases, it is possible to devise a numerical test for each case. As an example, consider the values of $d$ ending with $\cdots 3$. These must have the form $80 k+3$ (sum of three odd biquadrates prime to 5 ) or the form $80 k+33$ (sum of one odd and two even biquadrates prime to 5 ). Choosing the latter form, ${ }^{2}$ seventy instances are found in a tabulation of values of $d$ based on all admissible values of $x<700$. The first ten in order of magnitude are: 164833, 195313, 198593, 3029873, 4106193, 4590753, 5086913, 5693793, 5948193, 7424753. Testing these by a method (based upon the character of $k$ ), which need not be

[^0]
[^0]:    Received by the editors November 24, 1941.
    ${ }^{1}$ Solutions of the congruence in question can be read from C. J. G. Jacobi's Canon Arithmeticus, Berlin, 1839, pp. 230-231.
    ${ }^{2}$ This form was considered first because it includes Norrie's solution, which appears in The University of St. Andrew 500th Anniversary Memorial Volume, Edinburgh, 1911, p. 89.

