$$
0<t-x<1 / n \text { implies }[F(t)-F(x)] /(t-x) \leqq n ;
$$

the remainder of the proof.is unaltered. The next lemma is a slight generalization of a theorem of Marcinkiewicz.

Lemma 5.2. If $f(x)$ is measurable on $[a, b]$, and has either a left major or a right major, and also has either a left minor or a right minor, then $f(x)$ is Perron integrable on $[a, b]$.

The proof is that given by Saks, op. cit., p. 253; the principal change is that the reference to his Theorem 10.1 is replaced by a reference to our Lemma 5.1.

Since every P^{*}-integrable function $f(x)$ is measurable and has right majors and right minors, it is also Perron integrable by Lemma 5.2, and the equivalence of the integrals is established.

University of Virginia

ON THE LEAST PRIMITIVE ROOT OF A PRIME

LOO-KENG HUA

It was proved by Vinogradow ${ }^{1}$ that the least positive primitive root $g(p)$ of a prime p is $O\left(2^{m} p^{1 / 2} \log p\right)$ where m denotes the number of different prime factors of $p-1$. In 1930 he 2 improved the previous result to

$$
g(p)=O\left(2^{m} p^{1 / 2} \log \log p\right)
$$

or more precisely,

$$
g(p) \leqq 2^{m} \frac{p-1}{\phi(p-1)} p^{1 / 2}
$$

It is the purpose of this note, by introducing the notion of the average of character sums, ${ }^{3}$ to prove that if $h(p)$ denotes the primitive root with the least absolute value, $\bmod p$, then

$$
|h(p)|<2^{m} p^{1 / 2}
$$

Received by the editors December 3, 1941.
${ }^{1}$ See, Landau, Vorlesungen über Zahlentheorie, vol. 2, part 7, chap. 14. The original papers of Vinogradow are not available in China.
${ }^{2}$ Comptes Rendus de l'Académie des Sciences de l'URSS, 1930, pp. 7-11.
${ }^{3}$ The present note may be regarded as an introduction of a method which has numerous applications.

