GENERALIZED FISCHER GROUPS AND ALGEBRAS¹

RICHARD H. BRUCK

Introduction. In this paper we shall be concerned with the structure of the rational representation of certain sets of matrices, to which we give the name generalized Fischer sets. If K is any field, ϕ any fixed automorphism of K, and A any matrix with elements in K, we use the notation A^{ϕ} for the ϕ -automorph of A; that is, the matrix obtained from A by subjecting each of its elements to the automorphism ϕ . Again, we denote by A^* the transposed ϕ -automorph A'^{ϕ} of A.

DEFINITION. A set \mathfrak{M} of n-rowed square matrices which contains A^* if it contains A is defined to be a generalized Fischer set.

Generalized Fischer groups, semi-groups and algebras are similarly defined.

In either of the special cases (1) K = k, a real field, ϕ is the identity automorphism; (2) $K = k^+ = k(-1)^{1/2}$, ϕ is the operation of taking the conjugate complex, the set \mathfrak{M} will be called a *Fischer set*. Fischer groups were probably named² by M. Schiffer, who, in 1933, proved in an unpublished work that every such group is completely reducible. This result has also been given by Specht [3], and will again be derived for all Kronecker product representations in the present paper (Theorem I, §4). In §1 we give a partial converse in the cases of the field of all reals (Example (6)), and the field of all complex numbers (Example (5)); this is summed up in Theorem II (§4).

Unlike Fischer sets, generalized Fischer sets and their rational representations are not always completely reducible; the regular representation of a finite group over a field of prime characteristic dividing the order of the group is a case in point (§1, Example (8)). When ϕ is non-involutary, the most we can give concerning the structure of g.F. sets is contained in Lemma II (§4) and Lemma IV (§5). But when ϕ is an involutary automorphism, a more satisfactory result is

² They were considered earlier by E. Fischer [2], who proved that the rational integral invariants of a Fischer group possessed a finite integrity basis.

Presented to the Society, December 30, 1940, under the title *The structure of the rational representation of a wide class of linear groups*; received by the editors December 11, 1940, and, in revised form, October 27, 1941.

¹ The following is essentially contained in the author's doctorate thesis [1], written under the direction of Professor Richard Brauer. Professor Brauer has also offered many helpful suggestions in connection with the present paper. The thesis undertook a general study of GL(n), and employed the results for specific calculation of the irreducible characters of GL(4) over an infinite modular field.