uniquely as a product of a finite number of prime differential ideals. The consistency of the axioms is easily shown. If we define differentiation in the ring $C(x)$, obtained by adjoining x to the field of the rational numbers, in any way so as to leave it closed, it may be shown that Axioms I-IV are always satisfied. In $C(x, y)$ differentiation may be defined in such way that the statement as above still holds. This is of interest because every ordinary ideal in $C(x, y)$ may not be expressed uniquely as a product of a finite number of prime ideals.

Hofstra College

ON THE ITERATION OF LINEAR HOMOGENEOUS TRANSFORMATIONS

ARNOLD DRESDEN

1. Statement of problem. The question which this note tries to answer is that of determining under what conditions on the matrix $\left(a_{i j}\right)$, ($i, j=1, \cdots, n$), the n-fold multiple sequence of complex numbers $x_{k}, x_{k}^{\prime}, \cdots, x_{k}^{(m)}, \cdots(k=1,2, \cdots, n)$ obtained by iteration of the linear homogeneous transformation $x_{k}^{\prime}=a_{k j} x_{j}$ will converge for every initial set $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Convergence is to be understood in the sense that there exists a set $X_{1}, X_{2}, \cdots, X_{n}$ such that, for $k=1,2, \cdots, n, x_{k}^{(m)} \rightarrow X_{k}$, as $m \rightarrow \infty$.
2. Jordan normal form. We begin by recalling that a matrix $A=\left(a_{i j}\right)$ with complex elements is similar to its Jordan normal form J_{0}. This means that there exists a unimodular matrix P, such that $A=P^{-1} J_{0} P$ and $J_{0}=P A P^{-1}$, where J_{0} is the direct sum of Jordan matrices J_{1}, \cdots, J_{N}. To each elementary divisor $\left(\lambda-\lambda_{\rho}\right)^{e_{\rho}}$ of the characteristic matrix $\lambda I-A(\rho=1,2, \cdots, N)$ and $e_{1}+e_{2}+\cdots+e_{N}$ $=n$, corresponds a Jordan matrix J_{ρ}. If $e_{\rho}>1$, then J_{ρ} has zero elements everywhere, except in the principal diagonal, all of whose elements are λ_{ρ}, and in the diagonal immediately below the principal diagonal, all of whose elements are $1 .{ }^{1}$ If $e_{\rho}=1$, then J_{ρ} consists of the single element $\boldsymbol{\lambda}_{\rho}$.

It follows that any integral power of J_{0} is the direct sum of the same powers of the Jordan matrices J_{ρ}. Let us now denote by J an arbitrary Jordan matrix of order $n>1$,

[^0]
[^0]: Received by the editors August 25, 1941.
 ${ }^{1}$ See, for example, MacDuffee, Introduction to Abstract Algebra, p. 241.

