1942] LINEAR HOMOGENEOUS TRANSFORMATIONS

uniquely as a product of a finite number of prime differential ideals. The consistency of the axioms is easily shown. If we define differentiation in the ring C(x), obtained by adjoining x to the field of the rational numbers, in *any* way so as to leave it closed, it may be shown that Axioms I-IV are always satisfied. In C(x, y) differentiation *may* be defined in such way that the statement as above still holds. This is of interest because every ordinary ideal in C(x, y) may not be expressed uniquely as a product of a finite number of prime ideals.

HOFSTRA COLLEGE

ON THE ITERATION OF LINEAR HOMOGENEOUS TRANSFORMATIONS

ARNOLD DRESDEN

1. Statement of problem. The question which this note tries to answer is that of determining under what conditions on the matrix (a_{ij}) , $(i, j = 1, \dots, n)$, the *n*-fold multiple sequence of complex numbers $x_k, x_k', \dots, x_k^{(m)}, \dots \quad (k = 1, 2, \dots, n)$ obtained by iteration of the linear homogeneous transformation $x_k' = a_{kj}x_j$ will converge for every initial set $x = (x_1, x_2, \dots, x_n)$. Convergence is to be understood in the sense that there exists a set X_1, X_2, \dots, X_n such that, for $k = 1, 2, \dots, n, x_k^{(m)} \rightarrow X_k$, as $m \rightarrow \infty$.

2. Jordan normal form. We begin by recalling that a matrix $A = (a_{ij})$ with complex elements is similar to its Jordan normal form J_0 . This means that there exists a unimodular matrix P, such that $A = P^{-1}J_0P$ and $J_0 = PAP^{-1}$, where J_0 is the direct sum of Jordan matrices J_1, \dots, J_N . To each elementary divisor $(\lambda - \lambda_\rho)^{e_\rho}$ of the characteristic matrix $\lambda I - A$ ($\rho = 1, 2, \dots, N$) and $e_1 + e_2 + \dots + e_N$ = n, corresponds a Jordan matrix J_ρ . If $e_\rho > 1$, then J_ρ has zero elements everywhere, except in the principal diagonal, all of whose elements are $1.^1$ If $e_\rho = 1$, then J_ρ consists of the single element λ_ρ .

It follows that any integral power of J_0 is the direct sum of the same powers of the Jordan matrices J_ρ . Let us now denote by J an arbitrary Jordan matrix of order n>1,

Received by the editors August 25, 1941.

¹ See, for example, MacDuffee, Introduction to Abstract Algebra, p. 241.