233. H. Schwerdtfeger: A complete parametrization of the symplectic group.

While all known parametrizations of the symplectic group omit certain "exceptional" elements, the parametrization derived in the present paper covers the whole group. Let ϵ be the n-rowed unit matrix and F the matrix with first row 0,0 and second row ϵ ,0. A 2n-rowed real regular matrix T is proved to be symplectic if and only if T'FT-F=H is symmetric (contact condition), and satisfies the condition: $(F'-F) \cdot (H+F)$ is idempotent. To prove the sufficiency of the latter condition one has to show that for any such matrix H a symplectic T can be found with which it is associated by the said relation. By establishing a set of normal forms for H under the transformation S'HS where S is a 2n-rowed matrix for which S'FS=F, that is, S is the matrix with first row σ ,0 and second row $0,\sigma'^{-1}$, a set of normal matrices T can be found such that RTS is the most general symplectic matrix where R is the matrix with first row ρ ,0; second row $0,\rho'^{-1}$ and ρ,σ are any regular n-rowed matrices. The method has been carried through in detail for n=2. (Received May 1, 1942.)

Analysis

234. Einar Hille: Notes on linear transformations. IV. Representation of semi-groups.

Let $\{T_s\}$ be a semi-group of linear bounded transformations on a separable Banach space to itself, defined for s>0. Let T_s be weakly measurable and $\|T_s\| \le 1$ for s>0. Let T_s (E) be dense in E. Put $A_h = (1/h)[T_h - I]$. For $h \to 0$, $T_h x \to x$ everywhere in E and $A_h x \to A x$ in a dense set D(A). Here A is linear, closed and ordinarily unbounded. The resolvent $R(\lambda)$ of A is the negative of the Laplace transform of T_s and is bounded for $R(\lambda)>0$. Conversely, R_s is expressible in terms of $R(\lambda)$ by the inversion formula for Laplace integrals which gives an interpretation of T_s as exp (sA). A further interpretation is given by $T_s x = \lim_{h\to 0} \exp[sA_h]x$, valid in D(A). The method is essentially that of Stone. (Received April 6, 1942.)

235. Witold Hurewicz: An ergodic theorem without invariant measure.

Let E be an abstract space carrying a completely additive measure μ defined on a completely additive field Ω of subsets of E (it is assumed that a set $X \subseteq \Omega$ with $\mu(X) = \infty$ can always be split into a countable number of sets with finite measures). Let T be a one-to-one point transformation of E on itself satisfying the conditions: (1) $X \subseteq \Omega$ implies $T(X) \subseteq \Omega$; (2) $T(X) \subseteq X \subseteq \Omega$ implies $\mu(X - T(X)) = 0$ (incompressibility condition). Finally let F(X) ($X \subseteq \Omega$) be an additive finite-valued set function, absolutely continuous with respect to the measure μ . For $X \subseteq \Omega$, let $F_n(X) = \sum_{n=0}^n F(T^i(X))$, $\mu_n(X) = \sum_{n=0}^n \mu(T^i(X))(n=0,1,2,\cdots)$. Since F_n is a bsolutely continuous with respect to the measure μ_n , $F_n(X) = \int_{x} f_n d\mu_n$, where f_n is a measurable point function defined on E. It can be shown that the sequence $\{f_n\}$ converges almost everywhere to a function ϕ , invariant with respect to T. By "almost everywhere" is meant that the points of divergence form a set M such that $\mu(T^n(M)) = 0$ for $n=1,2,\cdots$. If the measure μ is finite and invariant with respect to T, this theorem coincides with Birkhoff's ergodic theorem. (Received April 24, 1942.)

236. William Karush: A sufficiency theorem for an isoperimetric problem in parametric form with general end conditions.

The problem studied is that of minimizing an integral $I(C) = g(a) + \int_{i}^{2} f(a, y, y') dt$