ON 3-DIMENSIONAL MANIFOLDS

C. E. CLARK

Let P be a 3-dimensional manifold. ${ }^{1}$ Let Q be a 2 -dimensional manifold imbedded in P. Moreover, let P and Q admit of a permissible simplicial division K, that is, a simplicial division of P such that some subcomplex of K, say L, is a simplicial division of Q. Let K_{i} and L_{i} denote the i th normal subdivisions of K and L, respectively. We define the neighborhood N_{i} of L_{i} to be the simplicial complex consisting of the simplexes of K_{i} that have at least one vertex in L_{i} together with the sides of all such simplexes. By the boundary B_{i} of N_{i} we mean the simplicial complex consisting of the simplexes of N_{i} that have no vertex in L_{i}. Our purpose is to prove the following theorem.

Theorem. The boundary B_{2} is a two-fold but not necessarily connected covering of Q, and change of permissible division K replaces B_{2} by a homeomorph of itself.

Proof. The neighborhood N_{1} is the sum of a set of 3-dimensional simplexes. Some of these 3 -simplexes, say a_{1}, a_{2}, \cdots, have exactly one vertex in L_{1}, others, say b_{1}, b_{2}, \cdots, have exactly two vertices in L_{1}, while the remaining, say c_{1}, c_{2}, \cdots, have three vertices in L_{1}. Since K_{1} is a normal subdivision of K, the intersection of L_{1} and b_{i} or c_{i} is a 1 -simplex or 2 -simplex, respectively. Let α_{i}, β_{i}, and γ_{i} be the intersections of B_{2} and a_{i}, b_{i}, and c_{i}, respectively. We shall regard α_{i} and γ_{i} as triangles with vertices on the 1 -simplexes of a_{i} and c_{i}. Also we shall regard β_{i} as a square with vertices on the 1 -simplexes of b_{i}.

Any 2 -simplex of L_{1}, say $A B C$, is incident to exactly two of the c_{i}. Let $c_{1}=A B C M$. There is a unique 3 -simplex of N_{1}, say σ, that is incident to $A B M$ and different from c_{1}. This σ is either a c_{i}, say c_{2}, or a b_{i}, say b_{2}. If σ is c_{2}, then the triangles γ_{1} and γ_{2} have a common side. Suppose that σ is $b_{2}=A B M N$. The 2 -simplex $A B N$ is incident to a unique 3 -simplex of N_{1}, say τ, with $\tau \neq A B M N$. This τ is either c_{3} or b_{3}. If $\tau=b_{3}$, there is a c_{4}, or b_{4}. Finally we must find a $c_{p}=A B D S, D$ in L_{1}, S in B_{1}. We now consider $\beta_{2}, \beta_{3}, \cdots$, and β_{p-1}. The sum of these squares is topologically equivalent to a square. One side of the square is coincident with a side of γ_{1} and the opposite side coincident with a side of γ_{p}.

[^0]
[^0]: Received by the editors July 21, 1941.
 ${ }^{1}$ Our terminology is that of Seifert-Threlfall, Lehrbuch der Topologie. Manifolds are finite, while simplexes and cells are closed point sets.

