all integral functions f(z) satisfying the conditions $f(t) \in L_1$, $\mathfrak{H}_{f,\epsilon} = \{ |z| \}$. The proof is based upon a result due to Plancherel and Pólya.¹²

The University, Edgbaston, Birmingham, England

¹² Commentarii Mathematici Helvetici, vol. 10 (1937–1938), pp. 110–163, §27.

THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED FRACTIONS NEAR THE SINGULAR LINE

H. S. WALL

1. Introduction. We consider here continued fractions of the form¹

(1.1)
$$f(z) = \frac{g_0}{1} + \frac{g_{12}}{1} + \frac{(1-g_1)g_{22}}{1} + \frac{(1-g_2)g_{32}}{1} + \cdots$$

in which $g_0 \ge 0$, $0 \le g_n \le 1$, $(n = 1, 2, 3, \cdots)$, it being agreed that the continued fraction shall terminate in case some partial numerator vanishes identically. There exists a monotone non-decreasing function $\phi(u)$, $0 \le u \le 1$, such that

(1.2)
$$f(z) = \int_0^1 \frac{d\phi(u)}{1+zu};$$

and, conversely, every integral of this form is representable by such a continued fraction. Put $M(f) = 1.u.b._{|z| < 1} |f(z)|$. Then $M(f) \leq 1$ if and only if the continued fraction can be written in the form

(1.3)
$$f(z) = \frac{h_1}{1+\frac{(1-h_1)h_2z}{1+\frac{(1-h_2)h_3z}{1+\frac{(1-h_2)h_3z}{1+\cdots}}},$$

in which $0 \le h_n \le 1$, $(n = 1, 2, 3, \cdots)$. These functions are analytic in the interior of the z-plane cut along the real axis from z = -1 to $z = -\infty$.

The principal object of this paper is to prove the following theorem:

THEOREM 1.1. If $0 < h_n < 1$, $(n = 1, 2, 3, \dots)$, and $h_n \rightarrow 1/2$ in such a way that the series $\sum |h_n - 1/2|$ converges, then the function f(z) given

1942]

,

Presented to the Society, October 25, 1941; received by the editors August 14, 1941.

¹ H. S. Wall, *Continued fractions and totally monotone sequences*, Transactions of this Society, vol. 48 (1940), pp. 165–184.