A NOTE ON HILBERT'S OPERATOR

H. KOBER

The transformation

(1)
$$\mathfrak{H}f = \frac{1}{\pi} P V \int_{-\infty}^{\infty} \frac{f(t)}{t-x} dt = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{dt}{t} \left\{ f(x+t) - f(x-t) \right\}$$

is well known to have the following properties:

LEMMA 1.¹ When $1 , then <math>\mathfrak{H}f$ is a continuous (bounded) linear transformation with both domain and range $L_p(-\infty, \infty)$, and $\mathfrak{H}^2f = -f$.

LEMMA 2.² When $f(t) \in L_1(-\infty, \infty)$, then §f exists for almost all x in $(-\infty, \infty)$, but does not necessarily belong to $L_1(a, b)$, where a, b are arbitrary numbers $(-\infty \leq a < b \leq \infty)$; however $(1+x^2)^{-1} |$ §f $|^q \in L_1(-\infty, \infty)$ when 0 < q < 1. When f and §f belong to $L_1(-\infty, \infty)$, then §²f = -f.

The case p=1 appears to present the greatest difficulties. In the present note I shall deal with the set of elements $f(t) \in L_1(-\infty, \infty)$ for which $\mathfrak{H} \in L_1(-\infty, \infty)$. In consequence of the lemmas, in this set or in $L_p(-\infty, \infty)$ $(1 , <math>\mathfrak{H} f$ has no characteristic values other than $\pm i$. We shall start from the sets of characteristic functions and, incidentally, from the class \mathfrak{H}_p , the theory of which has been developed by E. Hille and J. D. Tamarkin; \mathfrak{H}_p is the set of functions F(z) (z=x+iy) which, for y > 0, are regular and satisfy the inequality

(2)
$$\int_{-\infty}^{\infty} |F(x+iy)|^p dx \leq M^p \quad \text{or} \quad |F(z)| \leq M$$

for $0 or <math>p = \infty$, respectively, where M depends on F and p only.³ By \Re_p we denote the corresponding class defined for y < 0, and by F(t), G(t) the limit-functions³ $(y \rightarrow 0; x = t)$ of elements $F(z) \in \mathfrak{F}_p$, $G(z) \in \mathfrak{R}_p$. By \mathfrak{F}_p' and \mathfrak{R}_p' , respectively, we denote the two sets of those limit-functions, and by $\mathfrak{F}_p' \doteq \mathfrak{R}_p'$ the smallest linear manifold

Received by the editors August 5, 1941.

¹ M. Riesz, Mathematische Zeitschrift, vol. 27 (1928), pp. 218-244.

² E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, 1937, §5.14. E. Hille and J. D. Tamarkin, Fundamenta Mathematicae, vol. 25 (1935), pp. 329–352. Comparing our notation with that of Hille-Tamarkin, we have $\delta f = -\tilde{f}$.

⁸ Loc. cit., $1 \le p < \infty$. T. Kawata, Japanese Journal of Mathematics, vol. 13 (1936), pp. 421–430, 0 . The limit-functions exist for almost all <math>t in $(-\infty, \infty)$ and belong to $L_p(-\infty, \infty)$.