finally an analytic r-cell contained in $\mathfrak{g} \cap W$. Hence \mathfrak{g} contains a nucleus of G and hence $\mathfrak{g}=G$, a contradiction which proves the theorem. ${ }^{3}$

Columbia University

[^0]
VECTOR SPACES OVER RINGS

C. J. EVERETT ${ }^{1}$

1. Introduction. Let $\mathfrak{M}=u_{1} K+\cdots+u_{m} K$ be a vector space (linear form modul [5, p. 111]) over a ring $K=\{0, \alpha, \beta, \cdots ; \epsilon$ unit element $\}$. By a submodul $\mathfrak{N} \leqq \mathfrak{M}$ is meant an "admissible" submodul: $\mathfrak{N K} \leqq \mathfrak{N}$. Elements v_{1}, \cdots, v_{n} of a submodul \mathfrak{n} form a basis for \mathfrak{n} (notation: $\mathfrak{N}=v_{1} K+\cdots+v_{n} K$) in case $\sum v_{i} \alpha_{i}=0$ implies $\alpha_{i}=0$, $i=1, \cdots, n$, and if every element of \mathfrak{R} is expressible in the form $\sum v_{i} \alpha_{i}, \alpha_{i} \in K$. The equivalent formulations of the ascending chain condition for submoduls of a vector space, and for right ideals of a ring will be used without further comment [5, §§80, 97].
2. Basis number, linear transformations. We remark that the following holds.
(A) The ascending chain condition is satisfied by the submoduls of a vector space \mathfrak{M} over K if and only if it is satisfied by the right ideals of K.

An infinite chain of right ideals $\mathfrak{r}_{1}<\mathfrak{r}_{2}<\cdots$ in K yields an infinite chain of submoduls $u_{1} \mathfrak{r}_{1}<u_{1} \mathfrak{r}_{2}<\cdots$ in \mathfrak{M}. The other implication is proved in [5, p. 87].
[By using a lemma due to N. Jacobson (Theory of Rings, in publication) Theorem (A) and the corresponding theorem for descending chain condition are easily proved in a unified manner.]

Linear transformations of \mathfrak{M} on \mathfrak{M} are given by $u_{j} \rightarrow u_{j}^{\prime}=\sum u_{i} \alpha_{i j}$. Write $\left(u_{1}^{\prime}, \cdots, u_{m}{ }^{\prime}\right)=\left(u_{1}, \cdots, u_{m}\right) A, A=\left(\alpha_{i j}\right)$. Under $u_{j} \rightarrow u_{j}^{\prime}$, let $\mathfrak{M}_{0} \rightarrow 0$. Thus $\mathfrak{M} / \mathfrak{M}_{0} \cong \mathfrak{M} A \leqq \mathfrak{M}$. Clearly $\mathfrak{M}_{0}=0$ if and only if $A v=0$ implies $v=0$, v an $m \times 1$ matrix over K, and $\mathfrak{M} A=\mathfrak{M}$ if and only if there exists an $m \times m$ matrix R with $A R=I$, the identity matrix.

Possibilities (i) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A=\mathfrak{M}$; (ii) $\mathfrak{M}_{0}>0$ and $\mathfrak{M} A<\mathfrak{M}$; (iii) $\mathfrak{M}_{0}=0$ and $\mathfrak{M} A<\mathfrak{M}$ are familiar. The possibility of (iv) $\mathfrak{M}_{0}>0$

[^1]
[^0]: ${ }^{3}$ We have proved, incidentally, that if an everywhere dense subgroup \mathfrak{g} of a simple Lie group $G_{r}(r>1)$ contains an analytic arc, then $\mathfrak{g}=G$.

[^1]: Presented to the Society, September 5, 1941; received by the editors May 27, 1941.
 ${ }^{1}$ The results presented here were obtained while the author was Sterling Research Fellow in mathematics, Yale University, 1940-1941. Thanks are due to Professors Oystein Ore, R. P. Dilworth, and the referee for helpful suggestions.

