RESOLUTION OF BOUNDARY PROBLEMS BY THE USE OF A GENERALIZED CONVOLUTION

R. C. F. BARTELS AND R. V. CHURCHILL

1. The Laplace transformation of the convolution. The generalized convolution $F^*(t)$ of F(t, t') is defined as follows:

$$F^{*}(t) = \int_{0}^{t} F(t - t', t') dt'.$$

In case $F(t, t') = F_1(t)F_2(t')$, the function $F^*(t)$ is the ordinary convolution $F_1 * F_2$, or Faltung,¹ of the two functions F_1 and F_2 .

Let $L\{F^*(t)\}$ denote the Laplace transform of F^* with respect to t,

$$L\left\{F^{*}(t)\right\} = \int_{0}^{\infty} e^{-st}F^{*}(t)dt,$$

and let $\overline{f}(s)$ denote the iterated transform of F(t, t'),

(1)
$$\overline{f}(s) = \int_0^\infty e^{-st'} dt' \int_0^\infty e^{-st} F(t, t') dt.$$

It will be seen that

(2)
$$L\{F^*(t)\} = \overline{f}(s),$$

which, in terms of the inverse Laplace transformation, implies that

$$L^{-1}\{\bar{f}(s)\} = F^{*}(t).$$

THEOREM. Let F(t, t') be an integrable function of t and t' in every finite rectangle $0 \le t \le T$, $0 \le t' \le T'$ and, for some real α , let $e^{-\alpha(t+t')} | F(t, t') |$ be bounded for all t and t' $(t \ge 0, t' \ge 0)$. Then if $R(s) > \alpha$, the integral $L \{F^*(t)\}$ is absolutely convergent and satisfies the equation (2).

Under the conditions stated, the iterated integral in (1) exists if $R(s) > \alpha$ and is equal to the absolutely convergent double integral

$$\int\int e^{-s(t+t')}F(t, t')d(t, t'),$$

over the quadrant $t \ge 0$, $t' \ge 0$. However, the latter is equal to

Presented to the Society, April 12, 1940, under the title An extension of Duhamel's theorem; received by the editors March 28, 1941.

¹ G. Doetsch, *Theorie und Andwendung der Laplace-Transformation*, Berlin, 1937, p. 155 ff.